
Name: ______ Date: _____

Unit 7 Review Sheet

Things to recall/remember:

- Special Right Triangles
 - o 30-60-90
 - o 45-45-90
- Indirect Proofs
- Using Trigonometry to find side lengths
- Using Trigonometry to find angle measures (Inverse Trig Functions)
- SOH CAH TOA
- Angle of Elevation
- Angle of Depression
- 1. Find the missing side lengths in the following diagrams:

-Reflexive Property

-Perpendicular Lines

-Segment Bisector

-Isosceles Triangle

-Midpoint

-Parallel Lines

-Angle Bisector

-Median

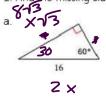
-Altitude

-Right Triangle

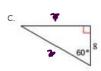
-Equilateral

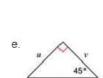
-Substitution

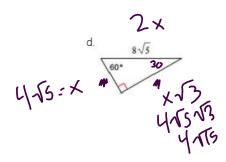
Postulate

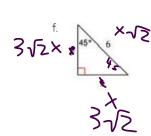

-Addition

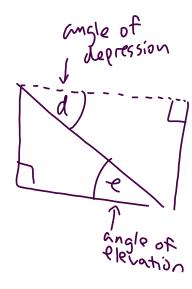
Postulate

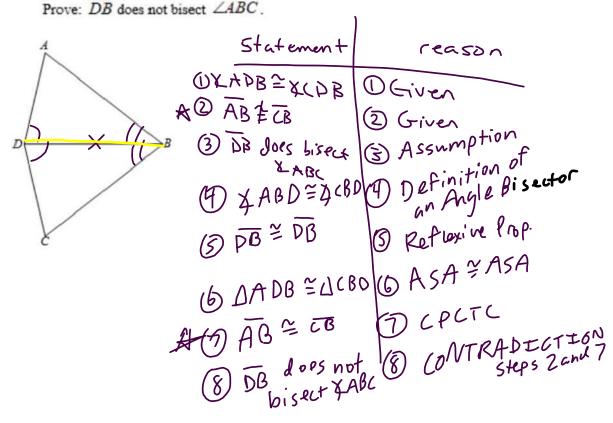

-Subtraction

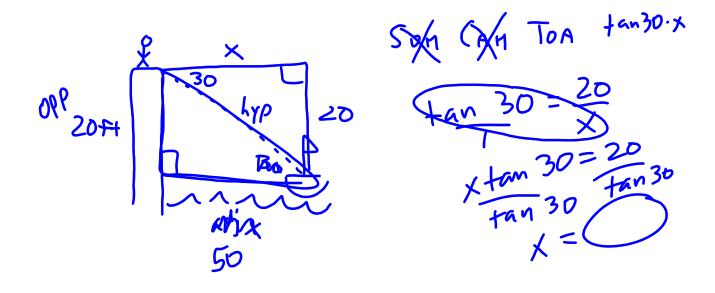

Postulate


Triangle

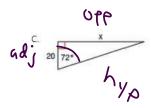








Given: $\overline{BC} \cong \overline{BD}$, $\angle C \not\triangleq \angle D$	Statement	reason
	(I) BC = BD	OGiven
Prove: ∠CBA ≠ ∠DBA	(3≯c¥¥D	2 Given
A	3)XCBA=XPBA	3 Assumption
3. Given: $\angle ADB \cong \angle CDB$, $\overline{AB} \not\equiv \overline{CB}$	PAB = AB SABC = ABD AABD ACE AD ACBA = ADDA	Preflexive Prop. SAS≅ SAS CPCTC Contradiation Steps 2 and b
	(170	I

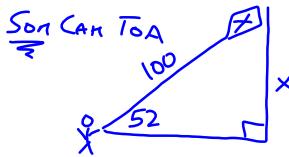


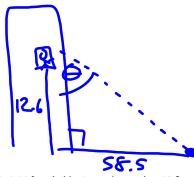
4. Find the missing side length to the nearest tenth:

 $\frac{1}{1}$ $\frac{23}{63}$ $\frac{1}{1}$ $\frac{23}{1}$ $\frac{23}{1}$

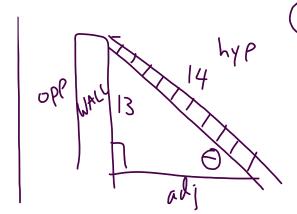
$$ad_{j}^{c} = \frac{X}{20 + an} 72 = \frac{X}{20}$$
 $A_{j}^{d} = \frac{X}{20 + an} 72$

5. Find the missing angle to the nearest whole degree:

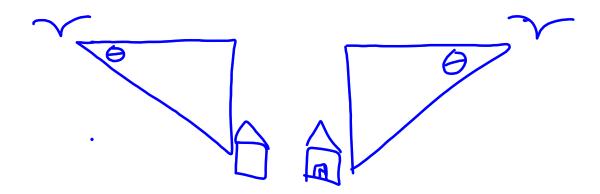




In DABC, with 90° angle at B AB = 6 BC = 8 AC = 12 $Sin \times A = 82$ $tan \times A = 6$ $tan \times A = 6$


6. A man flies a kite with a 100 foot string. The angle of elevation of the string is 52°. How high off the ground is the kite?

7. A person stands at the window of a building so that his eyes are 12.6 m above the level ground. An object is on the ground 58.5 m away from the building on a line directly beneath the person. Compute the angle of depression of the person's line of sight to the object on the ground.



8. A 14 foot ladder is used to scale a 13 foot wall. At what angle of elevation must the ladder be situated in order to reach the top of the wall?

Son CAH TOA

$$sin \times = \frac{13}{14}$$

 $sin^{-1}(13/14) = 68^{\circ}$

