\qquad

Period: \qquad

Date: \qquad Mr. Valentino

Aim: What is the law of cosines?
Do Now: Solve for the missing side in $\triangle A B C$. Round to the nearest tenth.

Suppose we were given the triangle below. Could we use the Law of Sines to find a? Why or why not?

$$
\begin{array}{|l}
\hline \text { Law of Cosines } \\
\text { Useful for finding: } \\
\text { (1) Given two sides and the included angle find a missing side. } \\
\text { (2) Given there sides, find a missing Angle. } \\
\text { (3) Given two sides and the non-included angle, find a missing side. } \\
c^{2}=a^{2}+b^{2}-2 a b \cos C \\
b^{2}=a^{2}+c^{2}-2 a c \cos B \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{array}
$$

Find the length of the missing side (round to the nearest hundredth)

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c^{2}=(17)^{2}+(26)^{2}-(2(17)(26) \cos (124)) \\
& \sqrt{C^{2}}=\sqrt{1459.326527} \\
& c=38.20
\end{aligned}
$$

$$
\begin{aligned}
& (17)^{2}+(26)^{2}-(2 * 17 * 26 * \cos (1) \\
& \text { (...........................1459.326527. } \\
& \sqrt{\text { Ans }} \\
& 38.20113253 .
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

For $1-4$, find the missing lengths to the nearest whole number.

5. Mary is orienteering across a large flat plain from Marker A to Marker B which are 4 miles apart. After walking 1.8 miles she realizes she is 6° off-course. To the nearest tenth of a mile, how far from Marker B is she when she realizes her error?

6. Two ships leave port at 4 p.m. One is headed at a bearing of NE 38° and is traveling at 11.5 miles per hour. The other is traveling 13 miles per hour at a bearing of SE 47°. To the nearest mile, how far apart are they when dinner is served at 6 p.m.?

$$
\begin{gathered}
d^{2}=a^{2}+b^{2}-2 a b \cos 95 \\
d^{2}=23^{2}+26^{2}-2(23)(26) \cos 95 \\
\sqrt{a^{2}}=\sqrt{1309} \\
d=36 \text { miles }
\end{gathered}
$$

