Geometry CC - Mr. Valentino Unit 10 Lesson 3: Distance Formula!

Name: $\qquad$ Per

Aim: How can we find the length of a line segment?

Do Now: Find the length of each line segment below. Show/explain the process you took to find the length of each line.


## a: 6 units

CD: 8 units
FF: $\begin{aligned} & a^{2}+b^{2}=c^{2} \\ & b^{2}+8^{2}=c^{2} \\ & 36+64=c^{2}\end{aligned} \quad \rightarrow \begin{aligned} & 100=c^{2} \\ & c=10 \text { nits } \\ & n n i t\end{aligned}$
*How did you calculate the length of $A B$ and $C D$ ? Can you use the same method to calculate EF? Why/Why not?
we counted
the boxes
When a line is DIAGGONAL
through the coordinate plane
we carnot simply count moves

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \begin{array}{cc}
\text { DISTANCE FORMULA } & \text { Midpoint Formula } \\
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{array}
$$

the advantage of using the distance formula is that you do not need to draw a right $\Delta$ to find the answer. All you need are the endpoint coordinates

Find the distance between the points below. Leave your answer in simplest radical form.

1. $(0,-2)$ and $(-5,-1)$
$x_{1} y_{1} \quad x_{2} y_{2}$
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\sqrt{(-5-0)^{2}+(-1+2)^{2}}$
$\sqrt{(-5)^{2}+(1)^{2}}$
$\sqrt{25+1}$
$\sqrt{26}$

2. Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle.

Express your answer in simplest radical form.


$$
\begin{align*}
& \begin{array}{l}
\text { A and B } \\
\sqrt{(-3+6)^{2}+(6-2)^{2}} \sqrt{\operatorname{Band}( } \sqrt{(5+3)^{2}+(0-6)^{2}} \\
\sqrt{(3)^{2}+(4)^{2}} \\
\sqrt{\left(84+(-6)^{2}\right.}
\end{array} \\
& \sqrt{64+36}=\sqrt{100} \\
& \begin{array}{ll}
\sqrt{25} & \text { hand }( \\
\text { (5) } & \sqrt{(s+6)^{2}+(0-2)^{2}}
\end{array}  \tag{10}\\
& \sqrt{(11)^{2}+(-2)^{2}}
\end{align*}
$$

Practice Problems...yeah!

1. Find the length of the line segment whose endpoints are $(-8,7)$ and $(6,4)$.
2. The point $(1,2)$ lies on a circle. What is the length of the radius of this circle if the center is located at $(4,6)$ ?

3. Line segment $A B$ has endpoints $A(0,-6)$ and $B(5,6)$. Line segment $C D$ has endpoints $C(-8,2)$ and $D(4,7)$. Are these segments congruent? How do you know?
4. The point $(-3,3)$ lies on a circle. If the center is llocated at $(10,6)$ what is the length of the diameter of this circle?

## 5. One bus is 5 miles east and 2 miles north of the bus terminal. Another bus is 3 miles west and 6 miles south of the terminal. How far apart are the buses?


6. Find the perimeter of triangle VUW


