Name: \qquad
Period \qquad

Aim: What is the shoelace theorem?

Date: \qquad
Mr. Valentino

Do Now. What is the area of the green shaded region?

$$
\begin{aligned}
A_{\text {square }} & =4 \times 4 \\
& =16 \text { units }^{2}-16 \\
A_{\text {triangle }} & =\frac{1}{2} \text { ph } \\
& =\frac{1}{2}(2)(2)=2 \text { units }^{2}
\end{aligned}
$$

How can we find the area of the shaded region?

Shoelace Theorem

$$
\begin{aligned}
& A(4,11) \\
& B(12,4) \\
& C(16,7) \\
& A(4,11)
\end{aligned}
$$

$$
(4 \cdot 4)+(12 \cdot 7)+(16 \cdot 11)
$$

1. Consider a triangle with coordinates $(2,5),(1,2),(5,1)$. What is the area of the triangle?

$$
\begin{aligned}
&(2.5)(2 \cdot 2)+(1 \cdot 1)+(5 \cdot 5)=30 \\
&\left(y^{x}\right)(5 \cdot 1)+(2.5)+(1 \cdot 2)=17 \\
&\left(x^{2}\right) \\
&(2.5) \frac{17-30}{2} \\
&(2.5)=\frac{-13}{2} \frac{30-17}{2}=6.5 \text { units }^{2} \\
&=\mid-6.5)=6.5
\end{aligned}
$$

$$
\begin{aligned}
& 276 \\
& (11 \cdot 12)+(4 \cdot 16)+(7 \cdot 4) \\
& 224 \\
& \frac{276-224}{2}=\frac{52}{2} \\
& =26 \text { units }^{2}
\end{aligned}
$$

2 Find the area of the shaded region

3.) -ind the area of the shaded region

GREEN SHOELACE

4. ${ }^{* * *}$ CHALLENGING*** Find the area of the shaded region

5. Find the area of pentagon $\boldsymbol{A B C D E}$ with vertices $(\mathbf{2}, \mathbf{6}), \boldsymbol{B}(\mathbf{7}, \mathbf{2}), \boldsymbol{C}(\mathbf{3},-\mathbf{4}), \boldsymbol{D}(-\mathbf{3},-\mathbf{2})$, and $\boldsymbol{E}(-\mathbf{2}, \mathbf{4})$.
6. Find the area of quadrilateral $\boldsymbol{A B C D}$ with vertices $(\mathbf{6}, \mathbf{5}), \boldsymbol{B}(\mathbf{2},-\mathbf{4}), \boldsymbol{C}(-\mathbf{5}, \mathbf{2})$, and $\boldsymbol{D}(-\mathbf{3}, \mathbf{6})$

