$\qquad$
Date: $\qquad$

Period: $\qquad$

Aim: Transformations Review

Directions: Fill in the missing information to complete the chart below

| Transformation | Notation | Definition | Picture |
| :---: | :---: | :---: | :---: |
| Rotation | $\mathrm{R}_{\text {degrees }}$ | a transformation that turns a shape <br> - Size stays the same - distan <br> - position changes is preserve <br> - orientation changes Stays the same | $\begin{aligned} & e^{R_{90}(x, y) \rightarrow(-y, x)} \\ & d_{180}(x, y) \rightarrow(-x, y) \\ & R_{210}(x, y) \rightarrow(y,-x) \end{aligned}$ |
| Reflection | $r_{x-a x i s}$ | a transformation that flips a shape <br> - size stays the same - distanc <br> - position changes <br> presenced <br> - orientation changes <br> lettering |  |
| Translation | $\mathrm{T}_{(\times, y)}$ | a transformation that slides a shape <br> - size stays the same <br> - position hanges porientation Stays the same |  |
| Dilation | $\mathrm{D}_{\mathrm{k}}$ | a transformation that stretches/ <br> shrinks a shape <br> - size changes <br> - position may change <br> - orientation stays the same |  |

1. The image of $\triangle A B C$ after a rotation of $90^{\circ}$ clockwise about the origin is $\triangle D E F$, as shown below.


How can you determine the corresponding sides and angles?

## Which statement is true?

(1) $\overline{B C} \cong \overline{D E}$
(2) $\overline{A B}=\overline{D F}$
(3) $\angle C \pi \angle E$
(4) $\angle A \approx \angle D$
2. Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $A C \cong D F$ and $C B \cong F E$. Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

3. In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.


A rotation is a rigid motion that preserves distance.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.
4. What is the minimum number of degrees you have to turn each regular polygon to map it back onto itself?

5. Which regular polygon has a minimum rotation of $45^{\circ}$ to carry the polygon onto itself?
(1) octagon
(3) hexagon
(2) decagon
(4) pentagon
6. Quadrilateral $A B C D$ is graphed on the set of axes below.


When $A B C D$ is rotated $90^{\circ}$ in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?
(1) no and $C^{\prime}(1,2)$
(3) yes and $A^{\prime}(6,2)$
(2) no and $D^{\prime}(2,4)$
(4) yes and $B^{\prime}(-3,4)$
7. The rectangle $A B C D$ shown in the diagram below will be reflected across the $x$-axis.
a. What will not be preserved?

1) slope of $A B$
2) parallelism of $A B$ and $C D$
3) length of $A B$
4) measure of $\angle A$
b. Draw rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ after $r_{x \text {-axis }}$.
c. Draw rectangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ after $T_{(-8,10)} A^{\prime} B^{\prime} C^{\prime} D^{\prime}$

8. On the accompanying set of axes, graph $A B C$ with coordinates $A(-1,2), B(0,6)$, and $C(5,4)$. Then graph $A^{\prime} B^{\prime} C^{\prime}$, the image of $A B C$ after a dilation of 2

9. Which transformation does not always produce an image that is congruent to the original figure?
1) translation
2) dilation
3) rotation
4) reflection
10. Is the following transformation a translation or rotation? Justify your answer.

F

F

