

Reflection -

- A mirror of an imaseovera line
- notation $r_{y=x} \rightarrow$ reflection over the line $y=x$
- each point is the Same distanclfrom the line of reflection as the original point but is on the

opposite side of the line.

A] Line Reflections

1) $\triangle A B C$ has coordinates: $A(1,4) \quad B(2,8) \quad C(5,3)$.
alGaph $A B C \cdot A^{\prime}(-1,4) B^{\prime}(2,8) C^{\prime}(-5,3)$
b] Graph $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection in the y-axis

2) $\overline{A B}$ has coordinates: $A(2,-1) \quad B(9,-5)$. a] Graph $\overline{A B} \cdot A^{\prime}(2,1) B^{\prime}(9,5)$
b] Graph $\overline{A^{\prime} B^{\prime}}$, the image of $\overline{A B}$ after a reflection in the x-axis?

$$
\begin{aligned}
& \text { Reflection in the } x \text {-axis } \\
& r_{x-a x i s}(x, y)=(x-y)
\end{aligned}
$$

3) Reflection in the line $y=x$

a] Graph the segment with endpoints $A(3,1)$ and $B(5,4)$. Reflect this segment over the line $y=x$, and call its endpoints A^{\prime} and B^{\prime}. Find the coordinates of A^{\prime} and B^{\prime}.

$\xrightarrow[\text { Reflection in the line } y=x]{\neq} A^{\prime}(1,3)$

$$
r_{y y}(x, y)=(y x)
$$

$$
B^{\prime}(4,5)
$$

4) Reflection in the line $x=2$
a] Graph triangle $A B C$ with vertices $A(3,0), B(3,6)$, and $C(0,6)$.
Reflect this triangle over the line $x=2$ and call its endpoints A^{\prime}, B^{\prime}, and C^{\prime}. Find the coordinates of A^{\prime}, B^{\prime} and C^{\prime}.

$A(3,0)$	$A^{\prime}()$,
$B(3,6)$	$B^{\prime}()$.
$C(0,6)$	$C^{\prime}()$.

1. The size of the image is preserved Features of a Reflection
2. If a point lies on the line of symmetry, its location Stays the same.
3. The distance between point A and the line of symmetry and point A^{\prime} and the line of symmetry
is the same.
Graph the image of the figure using the transformation given. State the coordinates of the image.

State the coordinate of the point after it is reflected in the line given. The first one is done as an example.
5) $r_{x-a x i s}(4,5)=(4,-5)$
6) $r_{x-\alpha x i s}(1,9)=$
7) $r_{y-a x i s}(2,8)=$
8) $r_{y=x}(-10,-3)=$
9) $r_{y-a x i s}(6,11)=$
10) $r_{x-a x i s}($ kitten, face $)=$

