Geometry CC - Mr. Valentino
Unit 5 Lesson 1: Congruence
Aim: What is congruence?

Name: \qquad
Date: \qquad Period: \qquad * corresponding parts of congruent triangle are congruent

Congruent -
Two shapes are congruent when you can hrh flip or slide one so it fits exactly on the other.
Suppose you know $\triangle \mathrm{FIN} \cong \triangle$ WEB

Name 3 pairs of corresponding sides.

$$
\begin{array}{ll}
& \bar{F} \cong W E \\
\cdot & \overline{I N} \cong \overline{E B} \\
. & \overline{F N} \cong \overline{W B}
\end{array}
$$

Name 3 pairs of corresponding angles.

$$
\begin{aligned}
& \text { - } \Varangle F \cong \neq \not \subset W \\
& \text { - } \triangle N \cong \not \subset B \\
& \text { - XI } \subseteq 4 E
\end{aligned}
$$

Is it correct to say $\triangle \mathrm{NIF} \cong \triangle \mathrm{BEW}$?
Is it correct to say $\triangle \mathrm{INF} \cong \triangle E B W$?
Yeah!

The two triangles shown are congruent

$$
\triangle \mathrm{ABO} \cong \Delta C D O
$$

$$
\angle A \cong \not \subset C
$$

$$
\overline{A O}=\overline{C O}
$$

$$
\overline{\mathrm{BO}} \cong \overline{\mathrm{DO}}
$$

$$
\begin{aligned}
& \text { Yes. } \\
& \text { pu can conduce Dc|AB: } \\
& \text { alter rate interior angles } \rightarrow \underset{\text { be parallel }}{\text { lines must }}
\end{aligned}
$$

Explain how you can conclude $D C \| A B$:

Suppose you know that $D B \perp D C$. Explain how you can conclude $D B \perp B A$
alternate interior angles are congruent

The pentagons shown are congruent:
B corresponds to \downarrow
BLACK ROFIES
Angle \cong Angle E
$K B=4^{c m}$

If $C A \perp L A$, name two right angles in the figures.

$$
\Varangle A \text { and } K H
$$

The five leaves shown are all congruent, but one differs from the others. Which one is different and how?
\qquad
\qquad
\qquad
\qquad

Name the coordinates of points A, B and C.

A(,)

B(,)
$C(, \quad)$

Name the coordinates of a point D such that $\triangle A B C \cong \triangle A B D$

Name the coordinates of a point G such that $\triangle A B C \cong \triangle E F G$.

Is there another location for G such that $\triangle A B C \cong \triangle E F G$?

Name the coordinates of two possible points H such that $\triangle A B C \cong \triangle F E H$.

