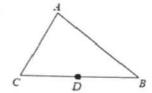
Name:	
roofs! Date:	Period:
rrect word that fits the definition	
Altitude	Supplementary Angles
Midpoint	Complementary Angles
Vertical Angles	Median
Linear Pair	
is the point on the line seg	ment that divides the segment into two
is any line or part of a line that	at intersects a line segment at its
	rom any vertex of a triangle to the
is a ray whose endpoint is the	ne vertex of the angle and which divide
	form right angles
	g from any vertex of a triangle,
e side.	
_ are two nonadjacent angles for	med by two intersecting lines.
_ are two angles whose sum is 90)°.
_ are two angles whose sum is 18	30°.
_ are adjacent supplementary an	gles.
	roofs! Date: rrect word that fits the definition Altitude Midpoint Vertical Angles Linear Pair is the point on the line seg is any line or part of a line that is a line segment extending the e. is a ray whose endpoint is the t angles. are two lines which intersect to is a line segment extending the side. are two nonadjacent angles for are two angles whose sum is 90 are two angles whose sum is 90 are two angles whose sum is 18

Why Study Proofs?


You use proofs every day, without knowing it. Geometry is logical and it teaches you how to think and prove that things are so, step by step by step. Proofs are excellent lessons in reasoning. Without logic and reasoning, you are dependent on jumping to conclusions or WORSE, having empty opinions!

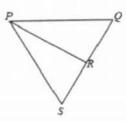
A <u>Geometry Proof</u> is a logical argument that establishes the <u>Thath</u> of a statement.

Two Column Proofs

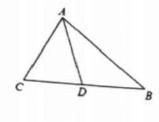
For each question, draw a conclusion based on the given information (use the vocabulary on the first page to help guide you)

1.

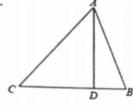
Statements	Reasons	
1. D is the midpoint of \overline{CB} .	1. Given	


2. (D = BI) 2. a midpoint divides a segment into two congruent segments

2.


Statements	Reasons	
1. \overline{AD} bisects \overline{CB} .	1. Given	
2.	2.	

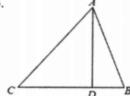
3.


Given

4.

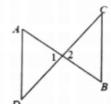
Reasons
1. Given
2.
L.

5.

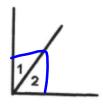

Statements	Reasons	
\overline{AD} is an altitude in $\triangle ABC$	1. Given	

2.

1.


2.

6.


Statements	Reasons	
1. $\overline{AD} \perp \overline{CB}$	1. Given	
2.	2.	

7.

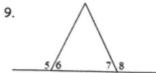
	Statements	
A	3 70	
1. AD	and 😿 intersect.	

Reasons

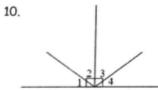
_	Statements	
1.	∠1 and ∠2 are	
	complementary.	

1. Given

1. \(\alpha\) and \(\alpha\) are complementary.


2. \(\alpha\) 1+\(\alpha\) 2= 90

2. \(\alpha\) 1-\(\alpha\) 1. Siven


2. \(\alpha\) montary

3. \(\alpha\) 1+\(\alpha\) 2= 90

5. \(\alpha\) 5 m of 95

Statements	Reasons
1. ∠5 ≅ ∠8	1. Given
2.	2.

Statements	Reasons
1. ∠1 ≅ ∠4	1. Given
2.	2.