Geometry CC - Mr. Valentino
Unit 6 Lesson 2: Proving Similarity with AA

Name: \qquad
Date: \qquad Period: \qquad

Aim: How can we prove triangles are similar?
Do Now:
a] Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?
(1) Their areas have a ratio of $4: 1 . \sqrt{ }$
(2) Their altitudes have a ratio of $2: 1$.

$$
\begin{aligned}
& \text { sides } 2: 1 \\
& \text { area } 4: 1
\end{aligned}
$$

(3) Their perimeters have a ratio of $2: 1, \checkmark$
(4) Their corresponding angles have a ratio of $2: 1$.
b] Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?
(1) $\frac{B C}{E F}=\frac{3}{2}$
(3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4} \quad \frac{3^{2}}{22}=\frac{9}{4}$
perimeter of $\triangle A B C$
(2) $\frac{m \angle A}{m \angle D}=\frac{3}{2}$
(4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$ I corresponding angles of another triangle, the triangles are similar.

1) Given: $\angle B A C \cong \angle E D C$

Prove: $\triangle A B C \sim \triangle D E C$

2) Given: $\overline{L A} \| \overline{D R}$

Prove: \triangle LEA $\sim \Delta D E R$

Statement	reason
LA	

(1) $\overline{L A} \| \overline{D R}$
(2) $\angle A \cong$ 4 gre
(3) $Y E \cong \not \subset E$
(4) $\triangle L E A \sim$ $\triangle D E R$
(1) Given
(2) Parallel lines Form congruent
(3) Reflexive property
(1) $A A \cong A A$
3) Given: $\angle B C A \cong \angle E F D$, \qquad $\overline{A B} \perp \overline{B C}, \overline{D E} \perp \overline{E F}$

Prove: $\frac{D E}{A B}=\frac{E F}{B C}$

(1) $\subset B(A \cong \not \subset F F)$
(2) $\overline{A B} \perp \overline{B C}, \overline{D E} \perp \overline{E F}$
(3) $\Varangle B$ and $Y E$ are right \Varangle 's
(1) $4 B \cong 女 E$
(5) $\triangle A B C \sim \triangle D E F$
(6) $\frac{D E}{A B}=\frac{E F}{B C}$
cut by a transuerel corresponding X^{\prime} 's (Corresponding $\begin{aligned} & 4 \\ & \text { Theorem) }\end{aligned}$ reason
(1) Given
(2) Given
(3) \perp lines form right x^{\prime} 's
(4) All right x^{\prime} sore \cong
(6) $A A \stackrel{A}{\approx} A$
(6)

Corresponding sides of similar triangles klee proportional
4) Given: $\angle 1 \cong \angle 3, \angle 2 \cong \angle 3$

Prove: $\frac{A C}{C D}=\frac{A B}{E D}$

5) Given: $\angle C B D \cong \angle E F D$

Prove: $\triangle B C D \sim \triangle F E D$

6) Given: $\angle A C R \cong \angle A M N$, \#6 and H7 for HW
$\overline{R A}$ bisects $\angle C A M$.
Prove: $\triangle C A R \sim \triangle M A N$

7) Given: $\overline{D E} / / \overline{C B}$

Prove: $\triangle C A B \sim \triangle D A E$

