Geometry CC – Mr. Valentino

Unit 6 Lesson 3: Similarity with SSS	& SAS Date:		_ Period:
Aim: How can we prove triangles are si	imilar with some new strate	gies?	
<u>Do Now:</u> Recall! In the diagram, $\Delta MNO \sim \Delta P$	OR Similar		
M	Q are_	esponding ANGLES of simi (ong went esponding SIDES of similar Proportional	_
What	is the difference between t	hese proofs?	
Given: $\overline{AB} / \overline{DE}$ Prove: $\overline{CE} = \overline{CB}$	Prove	ACXCD=CBXCE ACXCD=CBXCE L (OSS tion Itiplication F The P(Oportion A)	B C
	W.W.	f pre in a sa	,
1. Given: ΔFAC is isosceles	Si'	mil a (14) tion #	
with vertex A, $\angle GEF \cong \angle BDC$	5 tatement	reaso	
	AFAC is isosceles with vertex A	1 The base of an isosceles	angles of Dare =
3	*GEF = *BDC	3 Given	
	DGEF~ DBDC	D AA = A A	0
	BD BC	of similar L	nding sides ys are proportional
NEW! 6	EE×BC =	6 In a produc	
	10	means eq	nals the extremes.
		product	•

The next two methods for proving similar triangles are NOT the same theorems used to prove congruent triangles.

Hooray! We can prove triangles are similar two other ways!

SSS Similarity- If

the three sets of
corresponding sides of
two triangles are in
proportion, the triangles
are similar.

SAS Similarity-

If an angle of one triangle is congruent to the corresponding angle of another triangle and the lengths of the sides including these angles are in proportion, the triangles are similar.

If:
$$\frac{AB}{DE} = \frac{AC}{DF}$$

and $\angle A \cong \angle D$

Then: $\triangle ABC \sim \triangle DEF$

Determine if the triangles are similar. Explain why or why not:

5. Determine which triangles, if any, are similar: Explain why or why not.

6. Determine which triangles, if any, are similar. Explain why or why not.

