Geometry CC - Mr. Valentino
Unit 6 Lesson 3: Similarity with SSS \& SAS

Name: \qquad Date: \qquad Period: \qquad
Aim: How can we prove triangles are similar with some new strategies?
Do Now:
Recall! In the diagram, $\triangle M N O \xrightarrow{\sim}$ SiPQR

What is the difference between these proofs?

with vertex A,

Prove: $G E \times B C=F G \times B D$

(1) $\triangle F A C$ is isosicels (1) Given
(2) The base angles of
(2) $\Varangle F \cong \not \cong c$
(3) $Y \in E F \cong \not \subset B D C$
(3) Given
(4) $A A \cong A A$
(5) Corresponding sides
of similar $\Delta^{\prime s}$ are proportional
$F E \times B D$
(b) In a proportion,
the product of the
the product of the
means equals the extremes.
product of the

BEWARE The next two methods for proving similar triangles are NOT the same theorems used to prove congruent triangles.

Hooray! We can prove triangles are similar two other ways!

If: $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$ Then: $\triangle A B C \sim \triangle D E F$

SAS Similarity -

If an angle of one triangle is congruent to the corresponding angle of another triangle and the lengths of the sides including these angles are in proportion, the triangles are similar.

If: $\frac{A B}{D E}=\frac{A C}{D F}$ and $\angle A \cong \angle D$
Then: $\triangle A B C \sim \triangle D E F$

Determine if the triangles are similar. Explain why or why not:
1.

555

$\frac{20}{4}=5 \quad \frac{12}{2.4}=5 \quad \frac{15}{3}=5$

$$
\frac{2.24}{4.48}=\frac{1}{2} \quad \frac{3.16}{6.32}=\frac{1}{2}
$$

3.

4.

5. Determine which triangles, if any, are similar: Explain why or why not.

B

6. Determine which triangles, if any, are similar. Explain why or why not.

