Aim: How can we prove triangles are similar?

Do Now:

- al Two triangles are similar, and the ratio of each pair of corresponding sides is 2:1. Which statement regarding the two triangles is not true?
  - (1) Their areas have a ratio of 4:1.
  - (2) Their altitudes have a ratio of 2:1.
  - (3) Their perimeters have a ratio of 2:1.
  - (4) Their corresponding angles have a ratio of 2:1.
- b] Given  $\triangle ABC \sim \triangle DEF$  such that  $\frac{AB}{DE} = \frac{3}{2}$ . Which statement is *not* true?
  - $(1) \ \frac{BC}{EF} = \frac{3}{2}$

- (3)  $\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4}$
- $(2) \ \frac{\mathbf{m} \angle A}{\mathbf{m} \angle D} = \frac{3}{2}$
- (4)  $\frac{\text{perimeter of }\triangle ABC}{\text{perimeter of }\triangle DEF} = \frac{3}{2}$

How can we prove triangles are similar?

1) Given:  $\angle BAC \cong \angle EDC$ 

Prove:  $\triangle ABC \sim \triangle DEC$ 



2) Given:  $\overline{LA} \parallel \overline{DR}$ 

Prove: ΔLEA~ΔDER



3) Given: 
$$\angle BCA \cong \angle EFD$$
,  $\overline{AB} \perp \overline{BC}$ ,  $\overline{DE} \perp \overline{EF}$ 

Prove: 
$$\frac{DE}{AB} = \frac{EF}{BC}$$



4) Given:  $\angle 1 \cong \angle 3$ ,  $\angle 2 \cong \angle 3$ 

Prove:  $\frac{AC}{CD} = \frac{AB}{ED}$ 



5) Given:  $\angle CBD \cong \angle EFD$ 

Prove:  $\Delta BCD \sim \Delta FED$ 



6) Given:  $\angle ACR \cong \angle AMN$ ,  $\overline{RA}$  bisects  $\angle CAM$ .

Prove:  $\Delta CAR \sim \Delta MAN$ 



7) Given:  $\overline{DE} // \overline{CB}$ 

Prove:  $\Delta CAB \sim \Delta DAE$ 

