$\qquad$
Unit 5 Lesson 5: Fill in the Blank $\Delta$ Congruence
Date: $\qquad$ Period: $\qquad$
Aim: How can we prove triangles are congruent?

Do Now: Take out your homework from last night! We are going to go over the answers.

## Fill in the Blanks

1. Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}, \angle \mathrm{B} \cong \angle \mathrm{E}$, and $\angle \mathrm{A} \cong \angle \mathrm{D}$


Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$

| Statements | Reasons |
| :--- | :--- |
| $1 . \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$ | 1. Given |
| 2. | 2.Given |
| 3. $\angle \mathrm{A} \cong \angle \mathrm{D}$ | 3. |
| 4. $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ | 4. |

2. Given: $\overline{\mathrm{PQ}} \cong \overline{\mathrm{RS}}$, and $\angle \mathrm{PQS} \cong \angle \mathrm{RSQ}$


Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$

| Statements | Reasons |
| :--- | :--- |
| 1. | 1. Given |
| 2. $\overline{\overline{Q S}} \cong \overline{\mathrm{QS}}$ | 2. Given |
| 4. $\triangle \mathrm{PQS} \cong \triangle \mathrm{RSQ}$ | 3. |
| 4. |  |

Let's Practice! With a partner, work together to fill in the blanks of each proof.
3. Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}, \overline{\mathrm{AC}} \cong \overline{\mathrm{DF}}$, and $\overline{\mathrm{BC}} \cong \overline{\mathrm{EF}}$

4. Given: $\angle \mathrm{L} \cong \angle \mathrm{N}, \angle \mathrm{LOM} \cong \angle \mathrm{NMO}$


Prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{DEF}$
$\frac{\text { Statements }}{1 . \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}}$
2.
3.
4.

Reasons
1.
2.
3.
4. $\mathrm{SSS} \cong \mathrm{SSS}$

Prove: $\triangle \mathrm{LMO} \cong \triangle \mathrm{NOM}$

| Statements | Reasons |
| :--- | :--- |
| 1. | 1. |
| 2. | 2. Given |
| 3. | 3. Reflexive Property |
| 4. $\triangle \mathrm{LMO} \cong \triangle \mathrm{NOM}$ | 4. |

5. Given: $\overline{\mathrm{AE}}$ bisects $\overline{\mathrm{BD}}, \angle \mathrm{A} \cong \angle \mathrm{E}$


Prove: $\triangle \mathrm{ABC} \cong \triangle E D C$

| Statements | Reasons |
| :--- | :--- |
| 1. $\angle \mathrm{A} \cong \angle \mathrm{E}$ | 1. |
| 2. | 2. Given |
| 3. | 3. A segment bisector cuts a segment |
| 4. $\angle \mathrm{ACB} \cong \angle \mathrm{DCE}$ | 4. into $2 \cong$ segments |
| 5. $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$ | 5. |

6. Given: $\overline{\mathrm{LM}} \cong \overline{\mathrm{NO}}$, and $\angle \mathrm{M} \cong \angle \mathrm{O}$


Prove: $\triangle \mathrm{MPL} \cong \triangle \mathrm{NPO}$
Statements

1. $\overline{\mathrm{LM}} \cong \overline{\mathrm{NO}}$
2. 
3. 
4. 

Reasons
1.
2. Given
3.
4. $\mathrm{AAS} \cong \mathrm{AAS}$
7. Given: $\overline{\mathrm{PQ}} \cong \overline{\mathrm{SU}}, \overline{\mathrm{QR}} \cong \overline{\mathrm{ST}}$, and $\overline{\mathrm{PR}} \cong \overline{\mathrm{TU}}$

8. Given: $N$ is the midpoint of $\overline{\mathrm{MO}}, \overline{\mathrm{LM}} \cong \overline{\mathrm{OP}}$, and $\overline{\mathrm{LN}} \cong \overline{\mathrm{PN}}$


Prove: $\triangle \mathrm{LMN} \cong \triangle \mathrm{PON}$

| Statements | Reasons |
| :--- | :--- |
| 1. $\overline{\mathrm{LM}} \cong \overline{\mathrm{OP}}$ | 1. Given |
| 2. $\overline{\mathrm{LN}} \cong \overline{\mathrm{PN}}$ | 2. |
| 3. N is the Midpoint of $\overline{\mathrm{MO}}$ | 3. Given |
| 4. | 4 mid point divides a segment |
| 5. | $5 . \mathrm{SSS} \cong$ segments |

