Geometry CC – Mr. Valentino

Unit 5 Lesson 5: Fill in the Blank Δ Congruence

Name: _____ Date: _____ Period: _____

Aim: How can we prove triangles are congruent?

Do Now: Take out your homework from last night! We are going to go over the answers.

Fill in the Blanks

1. Given: $\overline{AB} \cong \overline{DE}$, $\angle B \cong \angle E$, and $\angle A \cong \angle D$		ź
A Given AB \cong DE, ZB \cong ZE, and ZA \cong ZD F Prove: $\triangle ABC \cong \triangle DBC$		
$\frac{\text{Statements}}{1. \overline{AB} \cong \overline{DE}}$ 2. 3. $\angle A \cong \angle D$ 4. $\triangle ABC \cong \triangle DEE$	Reasons 1. Given 2.Given 3. 4	
	1	

Prove: $\triangle ABC \cong \triangle DBC$

Statements	Reasons
1.	1. Given
2.	2. Given
3. QS≅QS	3.
4. △PQS≅△RSQ	4.

Let's Practice! With a partner, work together to fill in the blanks of each proof.

4. Given: ∠L≅∠N, ∠LOM≅∠NMO

Prove: △LMO≅△NOM

Statements	Reasons
1.	1.
2.	2. Given
3.	3. Reflexive Property
4. △LMO≅△NOM	4.

5. Given: \overline{AE} bisects \overline{BD} , $\angle A \cong \angle E$

Prove: $\triangle ABC \cong \triangle EDC$

Statements	Reasons
1.∠A≅∠E	1.
2.	2. Given
3.	3. A segment bisector cuts a segment
4. ∠ACB≅∠DCE	4. into 2 \cong segments
5. ∆ABC≅∆EDC	5.

Statements	Reasons
1. LM≅NO	1.
2.	2. Given
3.	3.
4.	4. AAS \cong AAS

7. Given: $\overline{PQ} \cong \overline{SU}$, $\overline{QR} \cong \overline{ST}$, and $\overline{PR} \cong \overline{TU}$

Prove: $\triangle PQR \cong \triangle UST$

Statements	Reasons
1.	1. Given
2.	2. Given
3.	3.
4. △PQR≅△UST	4.

8. Given: N is the midpoint of \overline{MO} , $\overline{LM} \cong \overline{OP}$, and $\overline{LN} \cong \overline{PN}$

Prove: △LMN≅△PON

Statements	Reasons
1. <u>LM</u> ≅ <u>OP</u>	1. Given
2. LN≅PN	2.
3. N is the Midpoint of MO	3. Given
4.	A midpoint divides a segment $4_{into} 2 \cong segments$
5.	5. $SSS \cong SSS$