\qquad
\qquad Period: \qquad
Fill in the Blanks... and an extra CHALLENGE!
Directions: Fill in the blanks for all of the missing statements/reasons in each proof.

1. Given: C is the midpoint of $\overline{\mathrm{BE}}, \angle \mathrm{B} \cong \angle \mathrm{E}$, and
$\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$

Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEC}$

Statements	Reasons
$1 . \angle \mathrm{B} \cong \angle \mathrm{E}$	1.
2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$	2.
3.	3. Given
4.	4. A midpoint divides a segment into $2 \cong$ segments
5. $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEC}$	5. SAS \cong SAS

2. Given: $\overline{\mathrm{QT}}$ bisects $\overline{\mathrm{SP}}, \overline{\mathrm{SP}}$ bisects $\overline{\mathrm{QT}}$

Prove: $\triangle Q R P \cong \triangle S R T$

Statements	Reasons
1. $\overline{\mathrm{QT}}$ bisects $\overline{\mathrm{SP}}$	1. Given
2.	2. Given
3. $\overline{\mathrm{QR}} \cong \overline{\mathrm{TR}}$	3.
4. $\mathrm{PR} \cong \overline{\mathrm{SR}}$	4.
5.	5. Vertical Angles are \cong
6. $\triangle \mathrm{QRP} \cong \triangle \mathrm{SRT}$	6.

3. Given: Q is the midpoint of $\overline{\mathrm{PR}} . \overline{\mathrm{PS}} \cong \overline{\mathrm{QT}}$ and

Prove: $\triangle \mathrm{PQS} \cong \triangle \mathrm{RQT}$

Statements	Reasons
1.	1. Given
2. $\overline{\mathrm{QS}} \cong \overline{\mathrm{RT}}$	2. Given
4.	3.
5. $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$	4. A.midpoint divides a segment into $2 \cong$ segments
	5.

Now try filling in a proof completely on your own!
4. Given: $\angle \mathrm{P} \cong \angle \mathrm{S}, \angle \mathrm{Q} \cong \angle \mathrm{T}$, and $\overline{\mathrm{QR}} \cong \overline{\mathrm{TU}}$

Prove: $\triangle \mathrm{PQR} \cong \triangle S T U$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

5. Given: $\overline{\mathrm{PR}} \cong \overline{\mathrm{TR}}, \angle \mathrm{P} \cong \angle \mathrm{T}$

Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

