Geometry Regents Exam Questions by Common Core State Standard: Topic Answer Section

1 ANS:

PTS: 4
REF: 011634geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
2 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines
3 ANS:

The length of $\overline{A^{\prime} C}$ is twice $\overline{A C}$.
PTS: 4
REF: 081632geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures

4 ANS:

>
PTS: 2
REF: 081628geo
NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
5

PTS: 2
REF: 011725geo NAT: G.CO.D. 12 TOP: Constructions KEY: line bisector

6 ANS:

PTS: 2
REF: 061631geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines

7 ANS:

PTS: 2 REF: 061525geo NAT: G.CO.D. 13 TOP: Constructions
8 ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo NAT: G.CO.D. 13 TOP: Constructions
9 ANS:

PTS: 2
REF: 081526geo
NAT: G.CO.D. 13 TOP: Constructions

10 ANS:

Right triangle because $\angle C B F$ is inscribed in a semi-circle.
PTS: 4 REF: 011733geo NAT: G.CO.D. 13 TOP: Constructions
11 ANS: 4

$$
-5+\frac{3}{5}(5--5)-4+\frac{3}{5}(1--4)
$$

$$
-5+\frac{3}{5}(10) \quad-4+\frac{3}{5}(5)
$$

$$
-5+6 \quad-4+3
$$

1
PTS: 2 REF: spr1401geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
12 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2 REF: 081531geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
13 ANS:
$4+\frac{4}{9}(22-4) 2+\frac{4}{9}(2-2)(12,2)$
$4+\frac{4}{9}(18) \quad 2+\frac{4}{9}(0)$
$4+8 \quad 2+0$
$12 \quad 2$
PTS: 2 REF: 061626geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

14 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
15 ANS: 1
$3+\frac{2}{5}(8-3)=3+\frac{2}{5}(5)=3+2=55+\frac{2}{5}(-5-5)=5+\frac{2}{5}(-10)=5-4=1$
1
PTS: 2 REF: 011720geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
16 ANS:

$$
\begin{array}{ll}
x=\frac{2}{3}(4--2)=4 & -2+4=2 \quad J(2,5) \\
y=\frac{2}{3}(7-1)=4 & 1+4=5
\end{array}
$$

PTS: 2 REF: 011627geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
17 ANS: 4
$x=-6+\frac{1}{6}(6--6)=-6+2=-4 \quad y=-2+\frac{1}{6}(7--2)=-2+\frac{9}{6}=-\frac{1}{2}$
PTS: 2
REF: 081618geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

18 ANS: 1
Alternate interior angles
PTS: 2 REF: 061517geo NAT: G.CO.C. 9 TOP: Lines and Angles
19 ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4 REF: 061532geo NAT: G.CO.C. 9 TOP: Lines and Angles
20 ANS: 1
PTS: 2
REF: 011606geo NAT: G.CO.C. 9
TOP: Lines and Angles
21 ANS: 2 PTS: 2 REF: 081601geo NAT: G.CO.C. 9
TOP: Lines and Angles
22 ANS: 1
$\frac{f}{4}=\frac{15}{6}$
$f=10$
PTS: 2 REF: 061617geo NAT: G.CO.C. 9 TOP: Lines and Angles
23 ANS: 4 PTS: 2 REF: 081611geo NAT: G.CO.C. 9
TOP: Lines and Angles
24 ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2 REF: 061509geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
25

$$
\begin{aligned}
& \text { ANS: } 1 \\
& \begin{aligned}
m=-\frac{2}{3} 1 & =\left(-\frac{2}{3}\right) 6+b \\
1 & =-4+b \\
5 & =b
\end{aligned}
\end{aligned}
$$

PTS: 2 REF: 081510geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
26
ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$m_{\perp}=2 \quad \begin{aligned}-4 & =12+b \\ -16 & =b\end{aligned}$

PTS: 2
REF: 011602geo
NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line

27 ANS: 1
$m=\left(\frac{-11+5}{2}, \frac{5+-7}{2}\right)=(-3,-1) m=\frac{5--7}{-11-5}=\frac{12}{-16}=-\frac{3}{4} m_{\perp}=\frac{4}{3}$
PTS: 2 REF: 061612geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
28 ANS: 3
$y=m x+b$
$2=\frac{1}{2}(-2)+b$
$3=b$
PTS: 2 REF: 011701geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
29 ANS: 4
The slope of $\overline{B C}$ is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.
PTS: 2 REF: 061614geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line
30 ANS: 2
$s^{2}+s^{2}=7^{2}$
$2 s^{2}=49$

$$
\begin{aligned}
s^{2} & =24.5 \\
s & \approx 4.9
\end{aligned}
$$

PTS: 2 REF: 081511geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
31 ANS:
$\frac{16}{9}=\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42$

$$
x \approx 36.6
$$

PTS: 4 REF: 011632geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
KEY: without graphics
32 ANS: 3
$\sqrt{20^{2}-10^{2}} \approx 17.3$
PTS: 2 REF: 081608geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
KEY: without graphics
33 ANS: 2
$6+6 \sqrt{3}+6+6 \sqrt{3} \approx 32.8$
PTS: 2 REF: 011709geo NAT: G.SRT.C. 8 TOP: 30-60-90 Triangles

34 ANS: 2

PTS: 2 REF: 081604geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
35 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by CPCTC. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
36 ANS:
$180-2(25)=130$
PTS: 2 REF: 011730geo NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
37 ANS: 3
$\frac{9}{5}=\frac{9.2}{x} 5.1+9.2=14.3$
$9 x=46$
$x \approx 5.1$
PTS: 2 REF: 061511geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
38 ANS: 4
$\frac{2}{6}=\frac{5}{15}$
PTS: 2 REF: 081517geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
39 ANS: 2
$\frac{12}{4}=\frac{36}{x}$
$12 x=144$
$x=12$
PTS: 2 REF: 061621geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
40 ANS:
$\frac{3.75}{5}=\frac{4.5}{6} \quad \overline{A B}$ is parallel to $\overline{C D}$ because $\overline{A B}$ divides the sides proportionately.
$39.375=39.375$
PTS: 2 REF: 061627geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
41 ANS: 4
PTS: 2 REF: 011704geo NAT: G.CO.C. 10
TOP: Midsegments

42 ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles
and a right triangle. $m_{B C}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad-1=-2+b \quad \frac{-12}{3}=\frac{-2}{3}+b \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4 REF: 081533geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
43 ANS: 1
$m_{\overline{R T}}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{\overline{S T}}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2 REF: 011618geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
44 ANS: 4 PTS: 2 REF: 061513geo NAT: G.CO.C. 11
TOP: Parallelograms
45 ANS:
Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2
REF: 061526geo NAT: G.CO.C. 11 TOP: Parallelograms
46 ANS: 1
180-(68•2)
PTS: 2 REF: 081624geo NAT: G.CO.C. 11 TOP: Parallelograms
47 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C. 11 TOP: Parallelograms

48 ANS: 3

PTS: 2 REF: 081508geo NAT: G.CO.C. 11 TOP: Parallelograms
49 ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO.C. 11 TOP: Parallelograms
50 ANS: 2
PTS: 2
REF: 081501geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
51 ANS: $1 \quad$ PTS: 2
TOP: Special Quadrilaterals
52 ANS: 1

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
53 ANS: 4
PTS: 2
REF: 011705geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
54 ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4 REF: fall1411geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
55 ANS: 3
$\frac{7-1}{0-2}=\frac{6}{-2}=-3$ The diagonals of a rhombus are perpendicular.
PTS: 2 REF: 011719geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
56 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2 REF: 081522geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: general

57 ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{\overline{S R}}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) m_{\overline{R P}}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$
Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $R S T P$ is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
58 ANS: 1

$$
m_{\overline{T A}}=-1 \quad y=m x+b
$$

$$
m_{\overline{E M}}=1 \quad 1=1(2)+b
$$

$$
-1=b
$$

PTS: 2 REF: 081614geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: general
59 ANS:

PTS: 2
REF: 011731geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

60 ANS: 3

$$
\begin{aligned}
& \sqrt{45}=3 \sqrt{5} \quad a=\frac{1}{2}(3 \sqrt{5})(6 \sqrt{5})=\frac{1}{2}(18)(5)=45 \\
& \sqrt{180}=6 \sqrt{5}
\end{aligned}
$$

PTS: 2 REF: 061622geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
61 ANS: 3
$A=\frac{1}{2} a b \quad 3-6=-3=x$
$24=\frac{1}{2} a(8) \frac{4+12}{2}=8=y$
$a=6$
PTS: 2 REF: 081615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
62 ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
63 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2 REF: 061523geo NAT: G.GMD.A. 1 TOP: Circumference
64 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2 REF: 011623geo NAT: G.GMD.A. 1 TOP: Circumference
65 ANS: 3
$\theta=\frac{s}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2
KEY: angle
REF: fall1404geo NAT: G.C.B. 5 TOP: Arc Length

66 ANS:
$s=\theta \cdot r \quad s=\theta \cdot r \quad$ Yes, both angles are equal.
$\pi=A \cdot 4 \frac{13 \pi}{8}=B \cdot 6.5$
$\frac{\pi}{4}=A$

$$
\frac{\pi}{4}=B
$$

PTS: 2
REF: 061629geo
NAT: G.C.B. 5
TOP: Arc Length
KEY: arc length
67 ANS:
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$
PTS: 4 REF: spr1410geo NAT: G.C.B. 5 TOP: Sectors
68 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2 REF: 081518geo NAT: G.C.B. 5 TOP: Sectors
69 ANS:
$A=6^{2} \pi=36 \pi 36 \pi \cdot \frac{x}{360}=12 \pi$

$$
\begin{aligned}
& x=360 \cdot \frac{12}{36} \\
& x=120
\end{aligned}
$$

PTS: 2 REF: 061529geo NAT: G.C.B. 5 TOP: Sectors
70 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$

$$
x=80 \quad \frac{180-100}{2}=40
$$

PTS: 2 REF: 011612geo NAT: G.C.B. 5 TOP: Sectors
71 ANS: 3
$\frac{60}{360} \cdot 8^{2} \pi=\frac{1}{6} \cdot 64 \pi=\frac{32 \pi}{3}$
PTS: 2
REF: 061624geo
NAT: G.C.B. 5 TOP: Sectors
72 ANS: 2
PTS: 2
REF: 081619geo
NAT: G.C.B. 5

73 ANS: 4
$\frac{300}{360} \cdot 8^{2} \pi=\frac{160 \pi}{3}$
PTS: 2 REF: 011721geo NAT: G.C.B. 5 TOP: Sectors
74 ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$

PTS: 2
REF: 081512geo
NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: common tangents
75 ANS: $1 \quad$ PTS: 2
TOP: Chords, Secants and Tangents
REF: 061508geo
NAT: G.C.A. 2
KEY: inscribed
REF: 061520geo NAT: G.C.A. 2
KEY: mixed
REF: 011621geo NAT: G.C.A. 2
KEY: inscribed
78 ANS:

$180-2(30)=120$
PTS: 2
REF: 011626geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: parallel lines
79 ANS: 2 PTS: 2
TOP: Chords, Secants and Tangents
REF: 061610geo NAT: G.C.A. 2
KEY: inscribed
80 ANS: 2
$8(x+8)=6(x+18)$
$8 x+64=6 x+108$
$2 x=44$
$x=22$
PTS: 2
REF: 011715geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: secants drawn from common point, length
81 ANS:
$\frac{3}{8} \cdot 56=21$
PTS: 2
REF: 081625geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: common tangents

82 ANS: 1
The other statements are true only if $\overline{A D} \perp \overline{B C}$.
PTS: 2 REF: 081623geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
83 ANS:
$\frac{152-56}{2}=48$
PTS: 2
REF: 011728geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle
84 ANS: 3 PTS: 2
REF: 081515geo NAT: G.C.A. 3
TOP: Inscribed Quadrilaterals
85 ANS: 2
$x^{2}+y^{2}+6 y+9=7+9$
$x^{2}+(y+3)^{2}=16$
PTS: 2 REF: 061514geo NAT: G.GPE.A. 1 TOP: Equations of Circles
86 ANS: 3
$x^{2}+4 x+4+y^{2}-6 y+9=12+4+9$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

PTS: 2 REF: 081509geo NAT: G.GPE.A. 1 TOP: Equations of Circles
87 ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$

$$
(x+3)^{2}+(y-2)^{2}=36
$$

PTS: 2 REF: 011617geo NAT: G.GPE.A. 1 TOP: Equations of Circles
88 ANS: 1
$x^{2}-4 x+4+y^{2}+8 y+16=-11+4+16$
$(x-2)^{2}+(y+4)^{2}=9$
PTS: 2 REF: 081616geo NAT: G.GPE.A. 1 TOP: Equations of Circles
89 ANS: 2
PTS: 2
REF: 061603geo NAT: G.GPE.A. 1
TOP: Equations of Circles

90 ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
PTS: 2 REF: 061623geo NAT: G.GPE.A. 1 TOP: Equations of Circles
91 ANS: 1
$x^{2}+y^{2}-6 y+9=-1+9$

$$
x^{2}+(y-3)^{2}=8
$$

PTS: 2 REF: 011718geo NAT: G.GPE.A. 1 TOP: Equations of Circles
92 ANS: 3
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$
PTS: 2 REF: 061503geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
93 ANS:
Yes. $\quad(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
\begin{aligned}
(3.4-1)^{2}+(1.2+2)^{2} & =16 \\
5.76+10.24 & =16 \\
16 & =16
\end{aligned}
$$

PTS: 2 REF: 081630geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
94 ANS: 3
$\sqrt{(-5)^{2}+12^{2}}=\sqrt{169} \sqrt{11^{2}+(2 \sqrt{12})^{2}}=\sqrt{121+48}=\sqrt{169}$
PTS: 2 REF: 011722geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
95 ANS: 1
$\frac{64}{4}=1616^{2}=256 \quad 2 w+2(w+2)=6415 \times 17=255 \quad 2 w+2(w+4)=64 \quad 14 \times 18=252 \quad 2 w+2(w+6)=64$
$13 \times 19=247$
PTS: 2 REF: 011708geo NAT: G.MG.A. 3 TOP: Area

108 ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
109 ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2 REF: 011607geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
110 ANS: 3
$\frac{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$
PTS: 2
KEY: spheres
111 ANS: 4
TOP: Volume
REF: 011614geo
NAT: G.GMD.A. 3 TOP: Volume
PTS: 2
REF: 061606geo NAT: G.GMD.A. 3
KEY: compositions
112 ANS:
Similar triangles are required to model and solve a proportion. $\frac{x+5}{1.5}=\frac{x}{1} \quad \frac{1}{3} \pi(1.5)^{2}(15)-\frac{1}{3} \pi(1)^{2}(10) \approx 24.9$

$$
\begin{aligned}
x+5 & =1.5 x \\
5 & =.5 x \\
10 & =x
\end{aligned}
$$

$$
10+5=15
$$

PTS: 6
REF: 061636geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
113
ANS: 4
$V=\pi\left(\frac{6.7}{2}\right)^{2}(4 \cdot 6.7) \approx 945$
PTS: 2 REF: 081620geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
114 ANS: 2
$4 \times 4 \times 6-\pi(1)^{2}(6) \approx 77$
PTS: 2
REF: 011711geo NAT: G.GMD.A. 3 TOP: Volume KEY: compositions

115 ANS: 1
$V=\frac{1}{3} \pi\left(\frac{1.5}{2}\right)^{2}\left(\frac{4}{2}\right) \approx 1.2$
PTS: 2 REF: 011724geo NAT: G.GMD.A. 3 TOP: Volume KEY: cones
116 ANS:

$$
\begin{aligned}
C & =2 \pi r \quad V=\frac{1}{3} \pi \cdot 5^{2} \cdot 13 \approx 340 \\
31.416 & =2 \pi r \\
5 & \approx r
\end{aligned}
$$

PTS: 4 REF: 011734geo NAT: G.GMD.A. 3 TOP: Volume KEY: cones
117 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees

PTS: 4 REF: spr1412geo NAT: G.MG.A. 2 TOP: Density
118 ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{100 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2 REF: fall1406geo NAT: G.MG.A. 2 TOP: Density
ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2 REF: 061507geo NAT: G.MG.A. 2 TOP: Density 120 ANS:
$\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere: $x \approx 9.115$
$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$
$477,360 \cdot 85=405,756$, which is greater than 400,000 .
PTS: 6 REF: 061535geo NAT: G.MG.A. 2 TOP: Density

121 ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$
PTS: 2 REF: 081516geo NAT: G.MG.A. 2 TOP: Density
122 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash
PTS: 2 REF: 081525geo NAT: G.MG.A. 2 TOP: Density
123 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2 REF: 011619geo NAT: G.MG.A. 2 TOP: Density
124 ANS:
$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.021 .95(100)-(37.83+98.02)=59.15$
PTS: 6 REF: 081536geo NAT: G.MG.A. 2 TOP: Density
125 ANS: 2
$\frac{1 \mathrm{l}}{1.2 \mathrm{oz}}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=\frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}} \frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}}\left(\frac{1 \mathrm{~g}}{3.785 \mathrm{l}}\right) \approx \frac{3.5 \mathrm{~g}}{1 \mathrm{lb}}$
PTS: 2 REF: 061618geo NAT: G.MG.A. 2 TOP: Density
126 ANS: 1
$\frac{1}{2}\left(\frac{4}{3}\right) \pi \cdot 5^{3} \cdot 62.4 \approx 16,336$
PTS: 2 REF: 061620geo NAT: G.MG.A. 2 TOP: Density
127 ANS:
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3 \operatorname{Dish} A$
PTS: 2 REF: 011630geo NAT: G.MG.A. 2 TOP: Density

128 ANS: 2

$$
\begin{aligned}
C & =\pi d \quad V=\pi\left(\frac{2.25}{\pi}\right)^{2} \cdot 8 \approx 12.8916 \quad W=12.8916 \cdot 752 \approx 9694 \\
4.5 & =\pi d \\
\frac{4.5}{\pi} & =d
\end{aligned}
$$

$\frac{2.25}{\pi}=r$
PTS: 2 REF: 081617geo NAT: G.MG.A. 2 TOP: Density
129 ANS:
$V=\frac{1}{3} \pi\left(\frac{8.3}{2}\right)^{2}(10.2)+\frac{1}{2} \cdot \frac{4}{3} \pi\left(\frac{8.3}{2}\right)^{3} \approx 183.961+149.693 \approx 333.65 \mathrm{~cm}^{3} 333.65 \times 50=16682.7 \mathrm{~cm}^{3}$
$16682.7 \times 0.697=11627.8 \mathrm{~g} 11.6278 \times 3.83=\$ 44.53$
PTS: 6 REF: 081636geo NAT: G.MG.A. 2 TOP: Density
130 ANS:
C: $V=\pi(26.7)^{2}(750)-\pi(24.2)^{2}(750)=95,437.5 \pi$

$$
95,437.5 \pi \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 307.62
$$

P: $V=40^{2}(750)-35^{2}(750)=281,250 \quad \$ 307.62-288.56=\$ 19.06$

$$
281,250 \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 288.56
$$

PTS: 6
REF: 011736geo NAT: G.MG.A. 2 TOP: Density
131 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$
PTS: 2
REF: 061515geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
132 ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2
REF: 061521geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: perimeter and area

133
ANS:

PTS: 2
REF: 061531geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
134 ANS:
$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y .9604+.25<1.5$

$$
.9604=y
$$

PTS: 4 REF: 061534geo NAT: G.SRT.B. 5 TOP: Similarity KEY: leg
135 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011620geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
136 ANS: 2
PTS: 2
TOP: Similarity KEY: basic
137 ANS:

$$
\begin{aligned}
\frac{120}{230} & =\frac{x}{315} \\
x & =164
\end{aligned}
$$

PTS: 2 REF: 081527geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
138 ANS: 3

1) $\frac{12}{9}=\frac{4}{3}$ 2) AA 3) $\frac{32}{16} \neq \frac{8}{2}$ 4) SAS

PTS: 2
REF: 061605geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

139 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2 REF: 081529geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
140 ANS: 1
$\frac{6}{8}=\frac{9}{12}$
PTS: 2 REF: 011613geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
141 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2
REF: 011622geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
142 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$
$x=15$
PTS: 2
REF: 011624geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
143 ANS: 2
$h^{2}=30 \cdot 12$
$h^{2}=360$
$h=6 \sqrt{10}$
PTS: 2
REF: 061613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
144 ANS: 2
$x^{2}=4 \cdot 10$
$x=\sqrt{40}$
$x=2 \sqrt{10}$
PTS: 2
REF: 081610geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg

145 ANS: 3

$$
\begin{aligned}
\frac{x}{10} & =\frac{6}{4} \quad \overline{C D}=15-4=11 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 081612geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
146 ANS: $1 \quad$ PTS: 2
TOP: Line Dilations
147 ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h, 2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2 REF: spr1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
148 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.

PTS: 2 REF: fall1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
149 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2 REF: 061522geo NAT: G.SRT.A. 1 TOP: Line Dilations
150 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo NAT: G.SRT.A. 1 TOP: Line Dilations
151 ANS: 2 PTS: 2 REF: 011610geo NAT: G.SRT.A. 1
TOP: Line Dilations
152 ANS: 1
B: $(4-3,3-4) \rightarrow(1,-1) \rightarrow(2,-2) \rightarrow(2+3,-2+4)$
C: $(2-3,1-4) \rightarrow(-1,-3) \rightarrow(-2,-6) \rightarrow(-2+3,-6+4)$
PTS: 2 REF: 011713geo NAT: G.SRT.A. 1 TOP: Line Dilations

153 ANS: 4
$3 \times 6=18$
PTS: 2 REF: 061602geo NAT: G.SRT.A. 1 TOP: Line Dilations
154 ANS: 4
$\sqrt{(32-8)^{2}+(28--4)^{2}}=\sqrt{576+1024}=\sqrt{1600}=40$
PTS: 2 REF: 081621geo NAT: G.SRT.A. 1 TOP: Line Dilations
155 ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT.A. 1 TOP: Line Dilations
156 ANS: 1 PTS: 2 REF: 081605geo NAT: G.CO.A. 5
TOP: Rotations KEY: grids
157 ANS:
$A B C$ - point of reflection $\rightarrow(-y, x)+$ point of reflection $\triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ because $\triangle D E F$ is a reflection of
$A(2,-3)-(2,-3)=(0,0) \rightarrow(0,0)+(2,-3)=A^{\prime}(2,-3)$
$B(6,-8)-(2,-3)=(4,-5) \rightarrow(5,4)+(2,-3)=B^{\prime}(7,1)$
$C(2,-9)-(2,-3)=(0,-6) \rightarrow(6,0)+(2,-3)=C^{\prime}(8,-3)$
$\triangle A^{\prime} B^{\prime} C^{\prime}$ and reflections preserve distance.
PTS: 4 REF: 081633geo NAT: G.CO.A. 5 TOP: Rotations
KEY: grids
158 ANS:

PTS: 2
KEY: grids
159 ANS: 2
TOP: Dilations
160 ANS: 4 TOP: Dilations
161 ANS: 1
$3^{2}=9$

REF: 011625geo NAT: G.CO.A. 5 TOP: Reflections
PTS: 2
REF: 061516geo NAT: G.SRT.A. 2

PTS: 2
REF: 081506geo NAT: G.SRT.A. 2

PTS: 2
REF: 081520geo
NAT: G.SRT.A. 2 TOP: Dilations

162 ANS: 1
$\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$
PTS: 2 REF: 081523geo NAT: G.SRT.A. 2 TOP: Dilations
163 ANS:

A dilation preserves slope, so the slopes of $\overline{Q R}$ and $\overline{Q^{\prime} R^{\prime}}$ are equal. Because the slopes are equal, $Q^{\prime} R^{\prime} \| Q R$.

PTS: 4 REF: 011732geo NAT: G.SRT.A. 2 TOP: Dilations
KEY: grids
164 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
165 ANS: $3 \quad$ PTS: 2
TOP: Mapping a Polygon onto Itself
166 ANS: $1 \quad$ PTS: 2
167 ANS:
$\frac{360}{6}=60$
PTS: 2 REF: 081627geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
168 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 011717geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself

169 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$
PTS: 2
170 ANS: 4
REF: 061510geo
NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
PTS: 2
TOP: Compositions of Transformations
REF: 061504geo
NAT: G.CO.A. 5
KEY: identify
171 ANS:
$T_{6,0}{ }^{\circ} r_{x-\text {-xis }}$

PTS: 2
KEY: identify
172 ANS:
$T_{0,-2} \circ r_{y \text {-xxis }}$

PTS: 2
REF: 011726geo
NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
173
ANS: 1
PTS: 2
REF: 081507geo NAT: G.CO.A. 5
TOP: Compositions of Transformations
KEY: identify
174 1 PTS: 2 ANS:

PTS: 2 REF: 081626geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: grids
ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2
KEY: grids
REF: spr1406geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations

177	ANS: 4 PTS: 2	REF: 081514geo	NAT:	G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: grids		
178	ANS: 4 PTS: 2	REF: 061608geo	NAT:	G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: grids		
179	ANS: 4 PTS: 2	REF: 081609geo	NAT:	G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: grids		
180	ANS: 2 PTS: 2	REF: 011702geo	NAT:	G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: basic		
181	ANS:			
	$M=180-(47+57)=76$ Rotations do not change angle measurements.			
	PTS: 2 REF: 081629geo	NAT: G.CO.B. 6	TOP:	Properties of Transformations
182	ANS: 4 PTS: 2	REF: 011611geo	NAT:	G.CO.B. 6
	TOP: Properties of Transformations	KEY: graphics		
183	ANS: 4			
	The measures of the angles of a triangle remain the same after all rotations because rotations are rigid m which preserve angle measure.			
	PTS: 2 REF: fall1402geo KEY: graphics	NAT: G.CO.B. 6	TOP:	Properties of Transformations
184	ANS: 4 PTS: 2	REF: 061502geo	NAT:	G.CO.A. 2
	TOP: Identifying Transformations	KEY: basic		
185	ANS: 2 PTS: 2	REF: 081513geo	NAT:	G.CO.A. 2
	TOP: Identifying Transformations	KEY: graphics		
186	ANS: 3 PTS: 2	REF: 081502geo	NAT:	G.CO.A. 2
	TOP: Identifying Transformations	KEY: basic		
187	ANS: 2 PTS: 2	REF: 081602geo	NAT:	G.CO.A. 2
	TOP: Identifying Transformations	KEY: basic		
188	ANS: 1 PTS: 2	REF: 061604geo	NAT:	G.CO.A. 2
	TOP: Identifying Transformations	KEY: graphics		
189	ANS: 3 PTS: 2	REF: 061616geo	NAT:	G.CO.A. 2
	TOP: Identifying Transformations	KEY: graphics		
190	ANS: 4 PTS: 2	REF: 011706geo	NAT:	G.CO.A. 2
	TOP: Identifying Transformations	KEY: basic		
191	ANS: 3 PTS: 2	REF: 011605geo	NAT:	G.CO.A. 2
	TOP: Analytical Representations of Trans	formations	KEY:	basic
192	ANS: 4 PTS: 2	REF: 061615geo	NAT:	G.SRT.C. 6
	TOP: Trigonometric Ratios			
193	ANS: 3 PTS: 2	REF: 011714geo	NAT:	G.SRT.C. 6
	TOP: Trigonometric Ratios			
194	ANS: 4 PTS: 2	REF: 061512geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions			
195	ANS: 1 PTS: 2	REF: 081606geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions			

196 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
197 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent

$$
2 x=0.8
$$

$$
x=0.4
$$

side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2 REF: fall1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
ANS: 1
PTS: 2
REF: 081504geo NAT: G.SRT.C. 7
TOP: Cofunctions
199 ANS: 4
PTS: 2
REF: 011609geo NAT: G.SRT.C. 7
TOP: Cofunctions
200 ANS:
$73+R=90$ Equal cofunctions are complementary.

$$
R=17
$$

PTS: 2 REF: 061628geo NAT: G.SRT.C. 7 TOP: Cofunctions
201 ANS:
Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.
PTS: 2
REF: 011727geo NAT: G.SRT.C. 7 TOP: Cofunctions

$$
T \approx 13.5
$$

PTS: 2 REF: 061505geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at $5: 05 . \tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4
REF: spr1409geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced

ANS:

$$
\begin{array}{rlrl}
\tan 52.8 & =\frac{h}{x} & x \tan 52.8 & =x \tan 34.9+8 \tan 34.9 \tan 52.8 \approx \frac{h}{9} \quad 11.86+1.7 \approx 13.6 \\
h & =x \tan 52.8 & x \tan 52.8-x \tan 34.9 & =8 \tan 34.9 \\
\tan 34.9 & =\frac{h}{x+8} & x(\tan 52.8-\tan 34.9) & =8 \tan 34.9 \\
h & =(x+8) \tan 34.9 & x & =\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9} \\
& x & \approx 9
\end{array}
$$

PTS: 6 REF: 011636geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
ANS:

PTS: 6
REF: fall1413geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced

$$
\begin{aligned}
\tan 7 & =\frac{125}{x} \quad \tan 16
\end{aligned}=\frac{125}{y} \quad 1018-436 \approx 582
$$

PTS: 4 REF: 081532geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
ANS:
$\sin 70=\frac{30}{L}$
$L \approx 32$
PTS: 2 REF: 011629geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics

$$
x \approx 18.8
$$

PTS: 2 REF: 061611geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: without graphics

209 ANS:

$$
\begin{aligned}
\sin 75 & =\frac{15}{x} \\
x & =\frac{15}{\sin 75} \\
x & \approx 15.5
\end{aligned}
$$

PTS: 2 REF: 081631geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
210 ANS: 2
$\tan \theta=\frac{2.4}{x}$

$$
\frac{3}{7}=\frac{2.4}{x}
$$

$$
x=5.6
$$

PTS: 2 REF: 011707geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
211 ANS: 3

$$
\cos 40=\frac{14}{x}
$$

$$
x \approx 18
$$

PTS: 2 REF: 011712geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2 REF: fall1401geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
ANS:

$$
\begin{aligned}
\tan x & =\frac{10}{4} \\
x & \approx 68
\end{aligned}
$$

PTS: 2 REF: 061630geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 214 ANS:

$$
\sin x=\frac{4.5}{11.75}
$$

$$
x \approx 23
$$

PTS: 2 REF: 061528geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

215 ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2 REF: 011616geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
216 ANS:

$$
\begin{aligned}
& \tan x=\frac{12}{75} \quad \tan y=\frac{72}{75} \quad 43.83-9.09 \approx 34.7 \\
& x \approx 9.09 \quad y \approx 43.83
\end{aligned}
$$

PTS: 4 REF: 081634geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
217
ANS: 3 PTS: 2
TOP: Triangle Congruency
218 ANS:
Reflections are rigid motions that preserve distance.
PTS: 2 REF: 061530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
219 ANS: 1
PTS: 2
REF: 011703geo NAT: G.SRT.B. 5
TOP: Triangle Congruency
220 ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $\overleftrightarrow{C H}$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overrightarrow{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo NAT: G.CO.B. 8 TOP: Triangle Congruency
221 ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect $\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo NAT: G.CO.B. 8 TOP: Triangle Congruency
222 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2 REF: 081530geo NAT: G.CO.B. 8 TOP: Triangle Congruency

ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C.
$\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.
PTS: 4 REF: 081534geo NAT: G.CO.B. 8 TOP: Triangle Congruency
ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B. 8 TOP: Triangle Congruency
225 ANS: 3
PTS: 2
REF: 081622geo NAT: G.CO.B. 8
TOP: Triangle Congruency
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO.C. 10 TOP: Triangle Proofs
ANS.
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.SRT.B. 4 TOP: Triangle Proofs
 $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles (Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4
REF: spr1411geo NAT: G.CO.C. 10 TOP: Triangle Proofs

ANS:
As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo NAT: G.CO.C. 10 TOP: Triangle Proofs

PTS: 2
REF: 061607geo
NAT: G.CO.C. 10 TOP: Triangle Proofs
231 ANS: 2

PTS: 2 REF: 061619geo NAT: G.SRT.B. 4 TOP: Triangle Proofs
Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
234 ANS: Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $A B C D$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{A B} \| \overline{C D}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle A C D$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{A D} \cong \overline{D C}$ (the sides of an isosceles triangle are congruent); quadrilateral $A B C D$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{A E} \perp \overline{B E}$ (the diagonals of a rhombus are perpendicular); $\angle B E A$ is a right angle (perpendicular lines form a right angle); $\triangle A E B$ is a right triangle (a right triangle has a right angle).

PTS: 6 REF: 061635geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs

ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4 REF: 061533geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R$, $W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E (given). $\angle A E D$ and $\angle C F B$ are right angles (perpendicular lines form right angles). $\angle A E D \cong \angle C F B$ (All right angles are congruent). $A B C D$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $\overline{A D} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel). $\angle D A E \cong \angle B C F$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\triangle A D E \cong \triangle C B F$ (AAS). $\overline{A E} \cong \overline{C F}$ (СРСТС).

PTS: 6 REF: 011735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent).
$\triangle A B C \sim \triangle A D B(A A) . \frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B. 5 TOP: Circle Proofs

239 ANS:
Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E (Given); Chords $\overline{C B}$ and $\overline{A D}$ are drawn (auxiliary lines drawn); $\angle C E B \cong \angle A E D$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent);
$\triangle B C E \sim \triangle D A E$ (AA); $\frac{A E}{C E}=\frac{E D}{E B}$ (Corresponding sides of similar triangles are proportional);
$A E \cdot E B=C E \cdot E D$ (The product of the means equals the product of the extremes).
PTS: 6 REF: 081635geo NAT: G.SRT.B. 5 TOP: Circle Proofs
240 ANS:
Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$ (given); $\angle D F E \cong \angle B F G$ (vertical angles); $\overline{A D} \| \overline{C B}$ (opposite sides of a parallelogram are parallel); $\angle E D F \cong \angle G B F$ (alternate interior angles are congruent); $\triangle D E F \sim \triangle B G F$ (AA).

PTS: 4 REF: 061633geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
241 ANS:
$\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects at A (given); $\angle I \cong \angle N, \angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle G I A \sim \triangle T N A(A A)$.

PTS: 2 REF: 011729geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
242 ANS:
A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.
PTS: 4 REF: 061634geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
243 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo NAT: G.C.A. 1 TOP: Similarity Proofs

