## Test Topics:

- Similarity Proofs
- AA (formal 2 column Proofs)
- SAS and SSS proofs
- Similar Figures
- Side splitter (PROPORTIONS! PROPORTIONS! PROPORTIONS!)
- Midsegment
- Ratio of areas and perimeters compared to sides
- Similarity with Altitudes in Right Triangles (altitude and leg rule)
- Dilations
- Constructing dilated figures
- Dilations of lines and points

1. A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?
1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.
2. If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$ ?
1) $3 A^{\prime} B^{\prime}=A B$
2) $B^{\prime} C^{\prime}=3 B C$
3) $\mathrm{m} \angle A^{+}=3(\mathrm{~m} \angle A)$
4) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$
3. The image of $\triangle A B C$ after a dilation of scale factor $k$ centered at point $A$ is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?

1) $2 A B=A D$
2) $\overline{A D} \perp \overline{D E}$
3) $A C=C E$

4) $\overline{B C} \| \overline{D E}$
4. In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$. If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$ ?
1) 6
2) 2
3) 3
4) 15

5. Triangle $P Q T$ with $\overline{R S} \| \overline{Q T}$ is shown below. If $P R=12, R Q=8$, and $P S=21$, what is the length of $\overline{P T}$ ?
1) 14
2) 17
3) 35
4) 38

6. In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and $B$ is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3$, $E D=6$, and $D C=15$, find the length of $\overline{E B}$.

7. Using the information given below, which set of triangles can not be proven similar?
1) 


3)

2)

4)

8. As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at $E$, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?

1) $\frac{C E}{D E}=\frac{E B}{E A}$
2) $\frac{A E}{B E}=\frac{A C}{B D}$
3) $\frac{E C}{A E}=\frac{B E}{E D}$
4) $\frac{E D}{E C}=\frac{A C}{B D}$

9. In the diagram below, $\triangle A B C \sim \triangle D E F$. If $A B=6$ and $A C=8$, which statement will justify similarity by $S A S$ ?
1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

10. In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $A B C$ is 36 cm . What is the length, in centimeters, of $E F$ ?
1) 6
2) 12
3) 18
4) 4

11. The accompanying diagram shows two similar triangles. Which proportion could be used to solve for $x$ ?
1) $\frac{x}{24}=\frac{9}{15}$
2) $\frac{24}{9}=\frac{15}{x}$
3) $\frac{32}{x}=\frac{12}{15}$

4) $\frac{32}{12}=\frac{15}{x}$
12. In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?

1) $C E=\frac{1}{2} C B$
2) $D E=\frac{1}{2} A B$

3) area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4) perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$
13. As shown in the diagram below, $\triangle A B C \sim \triangle D E F, A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$ ?

1) 28
2) 2
3) 14
4) 4

14. A triangle has sides whose lengths are 5,12 , and 13. A similar triangle could have sides with lengths of
1) 3,4 and 5
2) 6,8, and 10
3) 7,24, and 25
4) 10,24 , and 26
15. In the diagram below, $\triangle A B C \sim \triangle E F G, \mathrm{~m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of $x$.

16. Triangles $R S T$ and $X Y Z$ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$ ? Justify your answer.

17. To find the distance across a pond from point $B$ to point $C$, a surveyor drew the diagram below. The measurements he made are indicated on his diagram. Use the surveyor's information to determine and state the distance from point $B$ to point $C$, to the nearest yard.

18. If $A D=3$ and $D B=9$, find $C D$.

19. If $A D=3$ and $D B=9$, find $A C$.


20. Given: $\overline{\mathrm{GK}} \| \overline{\mathrm{HJ}}$


Prove: $\Delta \mathrm{GIK} \sim \Delta \mathrm{HIJ}$
23. Given: $\overline{\mathrm{MQ}} \| \overline{\mathrm{OP}}$


Prove: $\triangle M N Q \sim \triangle P O N$
24.

Given: $\overline{A B} / / \overline{D E}$

Prove: $A C \times C D=C B \times C E$

25. Given: $\angle P E M \cong \angle D A S$.

$$
\overline{D S} \perp \overline{S A}, \overline{P M} \perp \overline{M E}
$$

Prove: $\frac{P M}{D S}=\frac{M E}{S A}$

26. Construct $\triangle A B C$ after the transformation $D_{3}$. Label it $A^{\prime} B^{\prime} C^{\prime}$.

27. Construct $\triangle A B C$ after the transformation $D_{-2}$. Label it $A^{\prime} B^{\prime} C^{\prime}$.

28. The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

1. $y=-3 / 2 x+5$
2. $y=-2 / 3 x+5$
3. $y=-2 x-3$
4. $y=3 x+8$
5. The line $y=2 x-4$ is dilated by a scale factor of 3 and centered at the origin. Which equation represents the image of the line after the dilation?
1) $Y=2 x-4$
2) $Y=2 x-12$
3) $Y=6 x-4$
4) $Y=6 x-12$
30. A line that passes through the points whose coordinates are $(2,3)$ and $(8,5)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line
1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line
