\qquad
Date: \qquad Period: \qquad

It is important to take some time to identify the properties of the images that are being rotated, reflected, translated, or a combination of the three.

An \qquad (RIGID MOTION) is a transformation that preserves the distances and/or angles between the pre-image and image.

Example \#1

Example \#2
Example \#3

Definition: \qquad (lettering): The lettering of the points of the pre-image, in this diagram, is clockwise $A-B-C$, while the image is lettered counterclockwise $A^{\prime}-B^{\prime}-C^{\prime}$. When lettering changes direction, in this manner, the transformation is referred to as a nondirect or opposite isometry.

> Properties preserved under a line reflection from the pre-image to the image. 1. distance (lengths of segments remain the same) 2. angle measures (remain the same) 3. parallelism (parallel lines remain parallel) 4. collinearity (points remain on the same lines) --The orientation (lettering around the outside of the figure), is not preserved. The order of the lettering in a reflection is reversed (from clockwise to counterclockwise or vice versa).

Properties preserved under a translation from the pre-image to the image.

1. distance (lengths of segments remain the same)
2. angle measures (remain the same)
3. parallelism (parallel lines remain parallel)
4. collinearity (points remain on the same lines)
5. orientation (lettering order remains the same)

Properties preserved under a rotation from the pre-image to the image.

1. distance (lengths of segments remain the same)
2. angle measures (remain the same)
3. parallelism (parallel lines remain parallel)
4. collinearity (points remain on the same lines)
5. orientation (lettering order remains the same)

Directions: Fill in the chart with the coordinates of the image after each transformation. Then write the transformations as a composition of transformations. MAKE SURE TO LABEL WITH PRIMES! Ex: Reflect over the y-axis. Rotate 180°. Translate $(x, y) \rightarrow(x-3, y+1) \longrightarrow \mathrm{T}_{-3,1} \circ \mathrm{Ro}_{0,180^{\circ}} \circ \mathrm{r}_{\mathrm{y}-\mathrm{-xis}}$

1. Pre-image: $A(0,0), B(8,1), C(5,5)$

Rotate the figure 180°	
Reflect the figure over the x-axis	
Translate the figure according to $(x, y) \rightarrow(x+6, y-1)$	
Composition of transformations	

2. Pre-image: $D(-12,6), E(-4,6), F(-6,9), G(-10,9)$

Translate the figure according to $(x, y) \rightarrow(x+1, y-6)$	
Reflect the figure over the x-axis	
Reflect the figure over the y-axis	
Composition of transformations	

3. Pre-image: $\mathrm{H}(2,2), \mathrm{I}(-2,2), \mathrm{J}(-2,-2), \mathrm{K}(2,-2)$

Rotate the figure 180°	
Translate the figure according to $(x, y) \rightarrow(x+2, y+2)$	
Reflect the figure over the line $y=x$	
Composition of transformations	

4. Pre-image: $L(7,2), M(0,9), N(-6,-5), P(1,-12)$

Reflect the figure over the y-axis	
Reflect the figure over the x-axis	
Rotate the figure 90° clockwise about the origin	
Composition of transformations	

5. Pre-image: $\mathrm{Q}(0,0), \mathrm{R}(-13,0), \mathrm{S}(0,12)$

Rotate the figure 270° clockwise about the origin	
Translate the figure according to $(x, y) \rightarrow(x+5, y+5)$	
Composition of transformations	

6. Pre-image: $T(6,-3), U(8,-5), V(7,-7), W(5,-7), X(4,-5)$

Translate the figure according to $(x, y) \rightarrow(x-4, y+3)$	
Reflect the figure over the line $y=x$	
Rotate the figure 180°	
Composition of transformations	

