Name: _	ANSWER	KEY	
Period:			

Date: _____ Mr. Valentino

Unit 12 Review Sheet

Test Topics

- Equation of a circle
- Circle Vocabulary
- Angles and Arcs of the circle
 - o Central, Inscribed, Tangent-Chord, Intersecting Chords, Tangent-Tangent, Tangent-Secant, Secant-Secant, inscribed quadrilaterals
- Chord Length
- Tangent/Secant Length
- Super Circles

Equation of a Circle

Find the center and radius of the circle.

$$(x-3)^2 + (y+5)^2 = 9$$

(A)
$$(3, -5)$$
; 3

[B]
$$(-3, 5)$$
; 3

[B]
$$(-3, 5)$$
; 3 [C] $(-5, 3)$; 9 [D] $(-5, -3)$; 3

2. Find the center and radius of $x^2 + y^2 - 8x + 2y + 8 = 0$.

$$(A)$$
 center $(4, -1)$; $r = 3$

$$x^2-8x+y^2+2y=-8$$
 [B] center (-4, 1); $r=3$

[C] center
$$(4, -1)$$
; $r = 9$

(A) center (4, -1);
$$r = 3$$
 $x^2 - 8x + y^2 + 2y = -8$ [B] center (-4, 1); $r = 3$ [C] center (4, -1); $r = 9$ $x^2 - 8x + 16 + y^2 + 2y + 1 = [D]$ center (-4, 1); $r = 9$

$$(x-4)^2+(y+1)^2=9$$
 $(4,-1)$ $r=3$

 What is an equation of the circle with center (-5,4) and a radius of 7?

1)
$$(x-5)^2 + (y+4)^2 = 14$$

2)
$$(x-5)^2 + (y+4)^2 = 49$$

3)
$$(x+5)^2 + (y-4)^2 = 14$$

(4)
$$(x+5)^2 + (y-4)^2 = 49$$

4. Find the center and radius of $x^2 + y^2 + 8x - 10y + 37 = 0$.

$$x^{2}+8x+y^{2}-10y=-37$$

 $x^{2}+8x+16+y^{2}-10y+25=-37+16+25$
 $(x+4)^{2}+(y-5)^{2}=4$
 $(-4,5)$ $r=2$

5. What is the equation of the circle passing through the point (6, 5) and centered at (3, -4)?

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(6 - 3)^2 + (5 + y_1)^2}$$

$$= \sqrt{(3)^2 + (4)^2}$$

$$= \sqrt{9 + 81} = \sqrt{50}$$

1. As shown in the diagram below, \overline{AB} is a diameter of circle O, and chord \overline{AC} is drawn.

2. In the diagram below of circle O, m $\angle ABC = 24$.

What is the mZAOC?

- 1) 12
- 2) 24
- (3) 48
- 4) 60

- If $m\angle BAC = 70$, then \widehat{mAC} is
- 1 40
- 2) 70
- 3) 110
- 3. In the accompanying diagram of circle O, m < ABC = 2x and $m\overrightarrow{AC} = x + 60$. Find the value of x.

(I) 20

[2] 40

[3] 60

[4] 80

2(2x)= ×+60

4/x = x + 60 3x = 66 x = 20

4. Given the circle at the right with diameter \overline{AB} , find x. [1] 30° [2] 45° [3] 60° [4] 90°

- 5. Given a circle with the center indicated. Find x.
 - [1] 100
- [3] 50
- [2] 80
- (1)40

6. In the accompanying diagram, chord \overrightarrow{CD} is parallel to diameter \overrightarrow{AB} . If $\widehat{\text{mAC}} = 25$, what is $\widehat{\text{m} \angle COD}$?

130°

7. Two chords intersect within a circle to form an angle whose measure is 53°. If the intercepted arcs are represented by 3x + 3 and 10x - 14, find the measure of larger of these two arcs.

Given tangent \overline{AC} to the circle shown at the right.

[2] 13

[3] 30

[4]) 76

 $3 \times +3 + 10x - 1^{11}$ $\frac{3 \times -11}{2} = 5$ 13×-11 $\frac{2}{2} = \frac{53}{1}$ $106 = 13 \times -11$ $117 = 13 \times 9 = x$

Find the size of the arc designated by x.

[1] 25

[2] 50 [3] 100

(4) 260

Given the two secants shown in the diagram at the right, find the number of degrees in the angle labeled x.

[1]) 40°

[2] 60°

[3] 80°

[4] 140°

In the accompanying diagram, \overline{PA} and \overline{PB} are tangents drawn to circle O. If $m\angle PBA = 70$, find $m\angle P$.

- *P=40
- 11. In the accompanying diagram of circle O, \overrightarrow{PC} is a tangent, \overrightarrow{PBA} is a secant, $\overrightarrow{mAB} = 132$, and $\overrightarrow{mCB} = 46$. Find $\overrightarrow{m} \angle P$.

- 182-46
- = 68°

12. In the diagram below, quadrilateral ABCD is inscribed in circle P.

What is m∠4DC?

Chord Length

- 1. In the diagram of circle O below, chord \overrightarrow{AB} intersects chord \overrightarrow{CD} at E, DE = 2x + 8, EC = 3, AE = 4x 3, and EB = 4.
- Chords AB and CD intersect at point E in a circle with center at O. If AE = 8, AB = 20, and DE = 16, what is the length of CE?

What is the value of x?

- 3. In the diagram below of circle O, chord \overline{AB} bisects chord \overline{CD} at E_c If AE = 8 and BE = 9, find the length of \overline{CE} in simplest radical form.
- In the diagram below, circle O has a radius of 5, and CE = 2. Diameter AC is perpendicular to chord BD at E.

What is the length of \overline{BD} ?

- 5. In the diagram below of circle O, diameter \overline{AB} is perpendicular to chord \overline{CD} at E. If AO = 10 and BE = 4, find the length of \overline{CE} .
- 6. In the diagram below, diameter AB bisects chord CD at point E in circle F.

If
$$AE = 2$$
 and $FB = 17$, then the length of \overline{CE} is

Tangent-Secant Length

1. In the diagram below, \overline{AB} , \overline{BC} , and \overline{AC} are tangents to circle O at points F, E, and D, respectively, AF = 6, CD = 5, and BE = 4.

What is the perimeter of $\triangle ABC$?

3. In the diagram below, tangent P.4 and secant PBC are drawn to circle O from external point P.

If PB = 4 and BC = 5, what is the length of \overline{PA} ?

In the accompanying diagram, secant AB intersects circle O at D, secant AC intersects circle O at E, AE = 4, AC = 24, and AB = 16. Find AD.

$$(x)(16) = (4)(24)$$
 $16x = 96$

 In the diagram below, secants PQR and PST are drawn to a circle from point P.

If PR = 24, PQ = 6, and PS = 8, determine and state the length of \overline{PT} .

Super Circles

1. In the accompanying diagram of circle O, \overrightarrow{AE} and \overrightarrow{FD} are chords, \overrightarrow{AOBG} is a diameter and is extended to C, \overrightarrow{CDE} is a secant $\overrightarrow{AE} \parallel \overrightarrow{FD}$, and

 $\widehat{\mathsf{mAE}}:\widehat{\mathsf{mED}}:\widehat{\mathsf{mDG}}=5:3:1.$

 $m\widehat{DG} = 20$

mZAEF = 30

m∠DBG = 40

mzDCA = 40

m∠CDF = 120

In the accompanying diagram of circle O, diameter <u>AE</u> is extended through E to C; tangent <u>CB</u>, chord <u>AB</u>, and radius <u>OB</u> are drawn; and

 $\widehat{\text{m}AB}:\widehat{\text{m}BE}=2:1.$

3. Given: circle O, tangent \overline{TX} , secant \overline{TLZ} , chords

 $m\widehat{AB} = 120$

mZBAC = 30

m2C = 30

mZABC = 120

Is ΔOBC acute, right, obtuse, or equiangular? Why?

$$m\widehat{XL} = 80$$

$$m \angle T = 60$$
 $\frac{200 - 80}{2} = \frac{120}{2}$

$$m\angle ZXT = \frac{160}{2} = 80$$

