Topic 1: Constructions

1. Using a straightedge and compass, construct a square inscribed in circle O below construction marks.]

 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it ABCDEF. [Leave all construction marks.]

3. Using a compass and straightedge, construct the line of reflection over which triangle RST reflects onto triangle R'S'T'. [Leave all construction marks.]

1. The endpoints of \overline{DEF} are D(1,4) and F(16,14). Determine and state the coordinates of point E, if DE: EF = 2:3.

$$(x_1 + K(x_2-x_1), y_1+K(y_2-y_1))$$

 $(1+\frac{2}{5}(16-1), 4+\frac{2}{5}(14-4))$
 $(1+\frac{2}{5}(15), 4+\frac{2}{5}(10))$
 $(1+6, 4+4)$
 $(7,8)$

 Directed line segment PT has endpoints whose coordinates are P(-2,1) and T(4,7). Determine the coordinates of point J that divides the segment in the ratio 2 to 1. [The use of the set of axes below is optional.]

$$(-2+\frac{2}{3}(4-(-2)), 1+\frac{2}{3}(7-1))$$

 $(-2+\frac{2}{3}(6), 1+\frac{2}{3}(6))$
 $(-2+4, 1+4)$
 $(2, 5)$

- 3. Segment *CD* is the perpendicular bisector of *AB* at *E*. Which pair of segments does *not* have to be congruent?
 - $1 \frac{\overline{AD},\overline{BD}}{\overline{AD}}$
 - $2 \overline{AC}, \overline{BC}$
 - $\overline{AE},\overline{BE}$
 - (4) $\overline{DE}, \overline{CE}$

4. Given MN shown below, with M(-6, 1) and N(3,-5), what is an equation of the line that passes through point P(6, 1) and is parallel to MN?

(1)
$$y = -\frac{2}{3}x + 5$$

$$y = -\frac{2}{3}x - 3$$

$$y = \frac{3}{2}x + 7$$

4
$$y = \frac{3}{2}x - 8$$

 $slope_{MN} = \frac{\Delta y}{\Delta x}$ = $\frac{-5-1}{3-(-6)} = \frac{-6}{9} = \frac{-2}{3}$

$$y = mx + b$$

 $y = -\frac{2}{3}x + b$
 $1 = -\frac{2}{3}(6) + b$
 $1 = -\frac{12}{3} + b$ $y = -\frac{2}{3}x + 5$
 $1 = -4 + b$
 $5 = b$

 Line segment NY has endpoints N(-11,5) and Y(5,-7). What is the equation of the perpendicular bisector of NY?

(1)
$$y+1=\frac{4}{3}(x+3)$$
 $y+1=\frac{4}{3}x+4$ $y=\frac{4}{3}x+3$ Sippeny = $\frac{\Delta y}{\Delta x}$

$$y+1 = -\frac{3}{4}(x+3)$$

3
$$y-6=\frac{4}{3}(x-8)$$
 $\forall -6=\frac{4}{3}\times +\frac{3}{3}$

$$y-6=-\frac{3}{4}(x-8)$$

Slopeny =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{-7-5}{5-(-11)} = \frac{-12}{16} = -\frac{3}{4}$ reciprocal

$$y = \frac{4}{3}x + b$$

$$-1 = \frac{4}{3}(-3) + b$$

$$-1 = -\frac{12}{3} + b$$

$$-1 = -4 + b$$

$$3 = b$$

- 1. An equilateral triangle has sides of length 20. To the *nearest tenth*, what is the height of the equilateral triangle?
 - 1 10.0
 - 2 11.5
 - (3) 17.3
 - 4 23.1

- 20/10/10
- $10^{2} + x^{2} = 20^{2}$ $100 + x^{2} = 400$ $\sqrt{x^{2}} = \sqrt{300}$ x = 17.3

2. In the diagram below, $m\angle BDC = 100^{\circ}$, $m\angle A = 50^{\circ}$, and $m\angle DBC = 30^{\circ}$.

Which statement is true?

- $\angle ABD$ is obtuse.
- ② $\triangle ABC$ is isosceles. \checkmark
- \mathcal{X} m $\angle ABD = 80^{\circ}$
- $A \triangle ABD$ is scalene.
- 3. In \triangle CED as shown below, points A and B are located on sides \overline{CE} and \overline{ED} , respectively. Line segment AB is drawn such that AE = 3.75, AC = 5, EB = 4.5, and BD = 6.

Explain why \overline{AB} is parallel to \overline{CD} .

$$\frac{3.75}{5} = \frac{4.5}{6}$$
 (Side Splitter)

4. Triangle ABC has vertices with A(x,3), B(-3,-1), and C(-1,-4). Determine and state a value of x that would make triangle ABC a right triangle. [The use of the set of axes below is optional.]

Slope BC =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{-4 - (-1)}{-1 - (-3)}$
= $\frac{-3}{2}$
Slope of AB must)
be neg. reciprocal $(\frac{2}{3})$

$$\frac{2}{3} = \frac{\Delta y}{\Delta x}$$

$$\frac{2}{3} = \frac{-1 - 3}{-3 - x}$$

$$\frac{2}{3} = \frac{-14}{-3 - x}$$

5. In the diagram below, \overline{DE} , \overline{DF} , and \overline{EF} are midsegments of $\triangle ABC$.

The perimeter of quadrilateral ADEF is equivalent

to

$$1 \quad AB + BC + AC$$

$$2 \quad \frac{1}{2}AB + \frac{1}{2}AC$$

$$3 \quad 2AB + 2AC$$

$$4$$
 AB+AC

1. In parallelogram QRST shown below, diagonal \overline{TR} is drawn, U and V are points on \overline{TS} and \overline{QR} , respectively, and \overline{UV} intersects \overline{TR} at W.

- If $m \angle S = 60^\circ$, $m \angle SRT = 83^\circ$, and $m \angle TWV = 35^\circ$, what is $m \angle WVQ$?
- 1 37°
- 2 60°
- (3) 72°
- 4 83°
- 2. In the diagram below, if $\triangle ABE \cong \triangle CDF$ and \overline{AEFC} is drawn, then it could be proven that quadrilateral ABCD is a

- x square
- 2 rhombus
- rectangle
- 4 parallelogram
- 3. A parallelogram must be a rectangle when its
 - 1 diagonals are perpendicular
 - ② diagonals are congruent
 - 3 opposite sides are parallel
 - 4 opposite sides are congruent

4. In square *GEOM*, the coordinates of *G* are (2,-2) and the coordinates of *O* are (-4,2). Determine and state the coordinates of vertices *E* and *M*. [The use of the set of axes below is optional.]

5. Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle RST$?

$$\begin{array}{ccc}
1 & 9\sqrt{3} + 15 \\
2 & 9\sqrt{5} + 15 \\
3 & 45 \\
4 & 90
\end{array}$$

$$S (-5,1) (-5.7)+(-2.-5)$$

$$E (-2,7) + (7.1)=|-18|->18$$

$$T (7,-5) (1.-2)+(7.7)+(-5.-5)=72$$

$$(-5,1)$$

$$\frac{18+72}{2}$$
 = 45