Name: \qquad Date: \qquad
Period: \qquad Mr. Valentino

Important Vocabulary Homework

Below is a list of some of the important vocabulary words we have learned this year. Each word has a definition given but some words are missing. First fill in the blanks of each definition. Then you must draw a diagram to illustrate the definition.

Term	Picture/ Example
Reflexive Property- a segment or an angle is congruent to \qquad	
Midpoint - A point in the ___ of a segment.	
Perpendicular Lines - When two lines (or segments) intersect to form \qquad -	
Parallel Lines - Two lines that will never \qquad They form the following angle pairs: - Alternate interior angles - Alternate exterior angles - Corresponding angles - Same side interior angles - Same side exterior angles	
Segment Bisector- A line that intersects a segment and cuts a \qquad into two congruent	
Angle Bisector- A line that cuts an \qquad into two congruent \qquad	

Median- A segment that goes from the vertex of a triangle to the \qquad of the opposite side. It bisects a side!	
Altitude- A segment that goes from the vertex of a triangle and is \qquad to the opposite side. It creates 90° angles!	
Isosceles Triangle- A triangle with exactly \qquad congruent sides and \qquad congruent angles.	
Right Triangle- A triangle with a ___ angle.	
Equilateral Triangle- A triangle with \qquad congruent sides and \qquad congruent angles.	
Substitution Postulate- if two things are congruent to the same thing then they are congruent to each other. (transitive property) If $\mathrm{a}=\mathrm{b}$ and $\mathrm{a}=\mathrm{c}$ then $\mathrm{b}=\mathrm{c}$	
Addition Postulate- If you add the same thing to two equal things then the result is equal. If $a=b$, then $a+c=b+c$	
Subtraction Postulate- If you subtract the same thing from two equal things then the result is equal. If $a=b$, then $a-c=b-c$	

