Geometry	/ CC -	– Mr.	Va	lentino

Unit 9 Lesson 5: Proofs with Quadrilaterals

Name:	
Date:	Per:

Aim: How can we use the properties of quadrilaterals for proofs?

Do Now: List the 5 properties of a parallelogram (again !!!):

1. _____

2. _____

3.

4. _____

5. _____

I'LL GIVE YOU PROOF!

What makes a rectangle a special type of parallelogram?

- •
- •

What makes a rhombus a special type of parallelogram?

- •
- •
- •

What makes a square a special type of rhombus?

- •
- •

Given: Parallelogram GHJK Prove: Δ GLH \cong Δ JLK

	. H		
Statements	Reasons		

2.

Given: ABCD is a parallelogram FG bisects DB

Prove: $\overline{FE} \cong \overline{EG}$

3. Given: Rectangle RECT

Prove: $\triangle ART \cong \triangle ACE$

Given: PQRS is a parallelogram ST \perp PQ, QU \perp SR

Prove: $ST \cong QU$

5. Given: Rhombus ABCD with diagonals meeting at E

Prove: $\triangle AEB \cong \triangle CEB$

