

1) In parallelogram *ABCD*, the degree measure of angle *A* is represented by 2x and the degree measure of angle *B* by 2x + 60. Find the value of *x*.

2) In parallelogram *ABCD*, AB = 7x - 4 and CD = 2x + 21. Find *AB* and *CD*.

3) The degree measures of two opposite angles of a parallelogram are represented by 3x + 40 and x + 70. Find the measure of each angle.

4) Parallelogram *ABCD* is given with diagonals intersecting at *E*. If DE = 4y + 1 and EB = 5y - 1, find *DB*.

5) Parallelogram *ABCD* is given with diagonals intersecting at *E*. If $m \angle DAB = 4x - 60$ and $m \angle DCB = 30 - x$, find $m \angle DAB$, $m \angle DCB$, and $m \angle ABC$.

6) If the diagonals of parallelogram *ABCD* are \overline{AC} and \overline{BD} , which is *always* true? (Circle all that apply)

- (1) $\overline{AC} \cong \overline{BD}$ (3) $\overline{AD} \perp \overline{BD}$
- (2) $\angle DAC \cong \angle BAC$ (4) $\triangle DAC \cong \triangle BCA$

7) In parallelogram *ABCD*, $m \angle ABC = 3x - 12$ and $m \angle CDA = x + 40$. Find $m \angle ABC$, $m \angle CDA$, $m \angle BCD$, and $m \angle DAB$.

8) The measures of angles A and B of parallelogram ABCD are in the ratio of 2:7. Find the degree measure of angle D.

9) In parallelogram *ABCD*, the diagonals meet at *E*. Which is *always* true? (Circle all that apply)

- (1) $\triangle AED$ is an isosceles triangle. (3) $\triangle ABD$ is a right triangle.
- (2) $\triangle ABD \cong \triangle CDB$ (4) $\triangle AEB$ is a right triangle.

10) In parallelogram *ABCD*, the measure of angle *A* exceeds the measure of angle *B* by 30 degrees. Find the degree measure of angle *C*.

11) In parallelogram *ABCD*, BC = 9y + 10, AD = 6y + 40, and $AB = \frac{1}{2}y + 50$. Find *BC*, *AD*, *AB*, and *DC*.

12) Parallelogram *ABCD* is given with diagonals intersecting at *E*. If $m \angle DCB = a + 12$, and $m \angle CDA = 4a + 18$, find the degree measures of all 4 angles of the parallelogram.

13) Parallelogram *ABCD* is given with diagonals intersecting at *E*. If AE = 5x - 3, and EC = 15 - x, find *AC*.

14) In parallelogram *ABCD*, which is *always* true? (Circle all that apply)

- (1) AB = AD (3) $\overline{AB} // \overline{AD}$
- (2) AB = DC (4) $\angle A \cong \angle B$