Geometry CC – Mr. Valentino
Unit 9 Lesson 3: Squares and Rhombuses

Name:	
Date: _	Per:

Aim: What are the properties of squares and rhombuses?

·	the special quality that a
•	
·	
Properties of a R	Rhombus
A rhombus has all the properties of a	
A rhombus has	
The diagonals of a rhombus are	_
. The diagonals of a rhombus	

Properties of a Square

- 1. A square has all the properties of a _____
- 2. A square has _____
- 3. The diagonals of a square are _____
- 4. The diagonals of a square _____

2. Add as many measurements to this square as you can

Practice Problems

1. In the diagram below, quadrilateral STAR is a rhombus with diagonals SA and TR intersecting at E. ST = 3x + 30, SR = 8x - 5, SE = 3z, TE = 5z + 5, AE = 4z - 8, $m \angle RTA = 5y - 2$, and $m \angle TAS = 9y + 8$. Find SR, RT, and $m \angle TAS$.

- 2. ABCD is a parallelogram, with AB = 2x + 1, and DC = 3x 11.

 a] Find x.

 b] Find AB and DC.

 c] If AD = x + 13, why is ABCD a rhombus?
 - 3. *PQRS* is a rhombus. The shorter diagonal \overline{PR} measures 12 units and $m\angle PQR = 60$. Find the length of each side of the rhombus.

- 4. In rhombus ABCD, the diagonals \overline{AC} and \overline{BD} intersect at E. If AE = 5 and BE = 12, what is the length of \overline{AB} ?
 - 1. 7
 - 2. 10
 - 3. 13
 - 4. 17
- 5. The length of a side of a square is 5. In simplest radical form, find the length of a diagonal of the square.
 - 2√5
 - 2. 5
 - 3. $5\sqrt{2}$
 - 4. 10
- 6. A parallelogram *must* be a rhombus if the
 - 1. diagonals are perpendicular
 - 2. opposite angles are congruent
 - 3. diagonals are congruent
 - 4. opposite sides are congruent

7. <i>ABCD</i> is a rhombus with diagonals	\overline{AC}	and	\overline{BD}	intersecting	at E	Which	of these	must	be true	?
(circle all that apply)										

- $(1) \ \overline{AB} \cong \overline{DC}$
- (3) $\overline{AB} \cong \overline{BC}$
- (2) $\overline{AB} \cong \overline{AC}$
- (4) $\overline{AB} \cong \overline{AD}$

8. ABCD is a rhombus with diagonals \overline{AC} and \overline{BD} intersecting at E. Which of these **must** be true? (circle all that apply)

- (1) AE = EC
- $(3) \quad DE = EB$
- $(2) \quad AE = DE$
- (4) $\overline{AC} \perp \overline{DE}$

9. ABCD is a rhombus with diagonals \overline{AC} and \overline{BD} intersecting at E. Which of these **must** be true? (circle all that apply)

- (1) $\triangle ADC$ is isosceles
- (3) $\triangle ADE$ is a right triangle
- (2) $\triangle ADB$ is a right triangle
- (4) $\triangle ADE \cong \triangle ABE$

10. ABCD is a rhombus with diagonals \overline{AC} and \overline{BD} intersecting at E. Which of these **must** be true? (circle all that apply)

(1) $\overline{AC} \perp \overline{DB}$

- (3) $\overline{AC} \cong \overline{DB}$
- (2) $\angle DAB \cong \angle DCB$
- (4) $\angle ADB \cong \angle CDB$

11. What is the perimeter of a square whose diagonal is $3\sqrt{2}$?

12. In square ABCD diagonal AC is drawn. How many degrees are in there in the measure of ∠ACB?