Geometry	/ CC -	– Mr.	Va	lentino

Name:

Unit 10 Lesson 6: Proving Rhombuses on the Coordinate Plane

Date:	Dan
Dale	Per:

You guessed it...Proving RHOMBUSES on the Coordinate Plane!

DO NOW: Please list below the 3 properties that help us to prove that a parallelogram is a rhombus:

1. _____

2.____

3. _____

Great. Now let's talk about how we can do the above on the coordinate plane.

• How can we show the diagonals of a rhombus form a right angle?

• How can we show that adjacent sides of a rhombus are congruent?

Time for some practice.

1. The vertices of quadrilateral JILA are J(2,3), I(7,3), L(4,7), and A(-1,7).

Prove that quadrilateral JILA is a rhombus.

2. The vertices of quadrilateral TASM are T(-5,2), A(3,4), S(1,-4), and M(-7,-6).

Prove that quadrilateral TASM is a rhombus.

3. The vertices of quadrilateral SPOT are S(1,3), P(3,-4), O(-4,-2), and T(-6,5).

Prove that quadrilateral SPOT is a rhombus.

4. The vertices of quadrilateral ISLE are I(1,2), S(3,-1), L(4,2), and E(2,5).

Prove that quadrilateral ISLE is a parallelogram but **not** a rhombus.

