\qquad
Unit 10 Lesson 6: Proving Squares on the Coordinate Place
Date: \qquad Per: \qquad
And now...SQUARES on the Coordinate Plane
Do Now: List the 2 ways that you can prove a parallelogram is a square:

1. \qquad
\qquad
2. \qquad
\qquad
Therefore, we are going to first prove that the quadrilateral is a \qquad using
\qquad ,which is going to tell us a great amount of useful information about the quadrilateral. Let's do it!
3. Quadrilateral DANC has vertices $D(-1,0), A(3,3), N(6,-1)$, and $C(2,-4)$.

Prove that DANC is a square.

2. Quadrilateral LOVE has vertices $L(-2,-1), O(1,6), V(8,3)$, and $E(5,-4)$.

Prove that LOVE is a square.

3. Mr. Valentino is experimenting with a new drawing program on his computer. He created quadrilateral TINO with coordinates $\mathrm{T}(-2,3), \mathrm{I}(-5,-4), \mathrm{N}(2,-1)$, and $\mathrm{O}(5,6)$. Mr. Valentino believes that he has created a rhombus but not a square. Prove that Mr. Valentino is correct.

4. Quadrilateral $A B C D$ has vertices $A(1,1), B(-2,5), C(3,5)$, and $D(6,1)$. Prove that quadrilateral $A B C D$ is a rhombus and prove that it is not a square.

