Name:	
Date:	_ Per:

Aim: How can we solve "Super Circles?"

Do Now:

In the accompanying diagram, \overline{PA} is tangent to circle O at A, chord \overline{AC} and secant \overline{PCED} are drawn, and chords \overline{AOB} and \overline{CD} intersect at E. If m \widehat{AD} = 130 and m $\angle BAC$ = 50 find:

SUPER CIRCLES – Woah!

1. In the diagram, isosceles triangle ABC is inscribed in circle O, and vertex angle BAC measures 40°. Tangent \overline{PC} , secant \overline{PBA} and diameters \overline{BD} and \overline{AE} are drawn. Find:

- a. m \widehat{BC} =
- b. m**4**ABD =
- c. m**4**DOE =

d. m**∡**P =

e. m**∡**ACP

2. Circle O with tangent \overline{DE} and $\widehat{mBC}: \widehat{mCD}: \widehat{mAD}: \widehat{mAB} = 7:8:12:9$ Find all of the numbered angles.

3. In circle O, \overline{MN} is a tangent, \overline{NP} is a diameter, \overline{MQ} is a secant, \overline{OS} is a radius, m \widehat{QN} = 160, and m \angle PNS=40

In the accompanying diagram, PA is a tangent to circle O at point A, secant PBD intersects diameter AC at point E, m∠P = 40, and mCD:mDA = 1:8.

 $m\widehat{AD}$ =

$$m\widehat{CD} =$$

$$m < PBA =$$