Geometry CC – Mr. Valentino Unit 4 Lesson 5: Rotations	Name: Date:	Period:
Aim: What are rotations?		
<u>Do Now</u> :		
a) r _{x-axis} (-4, 5.5) =	b) r _{y-axis} (-4, -6) =	
c) T _{3,-5} (4, 5) =	d) T _{-4, -8} (-2, -7) =	
<u>Rotation -</u>		

1. Graph the segment with endpoints A(2, 1) and B(6, 3). Rotate this line segment about the origin by 90°. Call this new line segment A'B', and state the coordinates of A' and B'.

What do you think you should do if you were given this transformation?

	R _{0, -90°}	
	Let's Practice!	
a] $R_{0,90^{\circ}}(4,7) =$	e] $R_{O,180^{\circ}}(2,8) =$	i] $R_{0,270^{\circ}}(-5,-2) =$
b] $R_{0,90^{\circ}}(-3,11) =$	f] $R_{0,180^{\circ}}(-5,-99) =$	j] $R_{0,270^{\circ}}(3,-86) =$
c] $R_{0,90^{\circ}}(13,-9.6) =$	g] $R_{0,180^{\circ}}(-7,4.3) =$	k] $R_{0,270^{\circ}}(-6,0) =$

Let's do some practice. It's graphing time!

1)

Triangle ABC has coordinates: A(-6, 2) B(-7, 5) C(-1,3)

- a] On the grid, graph $\triangle ABC$, and then graph $\triangle A'B'C'$, which is the image of $\triangle ABC$ after $R_{0,90^\circ}$.
- b] On the same grid, graph triangle $\Delta A^{\prime\prime}B^{\prime\prime}C^{\prime\prime}$, which is the image of ΔABC after $R_{O,180^{\circ}}$
- c] On the same grid, graph triangle $\Delta A^{\prime\prime\prime}B^{\prime\prime\prime}C^{\prime\prime\prime}$, which is the image of ΔABC after $R_{0,270^\circ}$

Triangle ABC has coordinates: D(1, -2) = E(8, -3) = F(9, -7)

- a] On the grid, graph ΔDEF , and then graph $\Delta D'E'F'$, which is the image of ΔDEF after $R_{0,90^{\circ}}$.
- b] On the same grid, graph triangle $\Delta D^{\prime\prime}E^{\prime\prime}F^{\prime\prime}$, which is the image of ΔDEF after $R_{o,180^{\circ}}$
- c] On the same grid, graph triangle $\Delta D^{\prime\prime\prime}E^{\prime\prime\prime}F^{\prime\prime\prime}$, which is the image of ΔDEF after $R_{0,270^\circ}$

