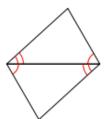
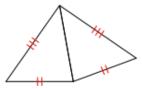
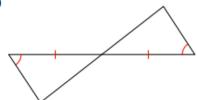

Geometry CC - Unit 5 Review

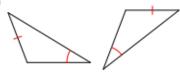
Important concepts/terms to remember:

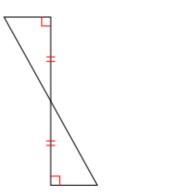

- SSS Congruence
- SAS Congruence
- AAS Congruence
- ASA Congruence
- HL Congruence
- CPCTC
- Reflexive Property
- Addition Postulate
- Subtraction Postulate

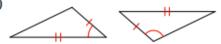
State if the below triangles are congruent and, if so, by what postulate:

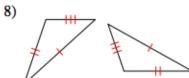

1)

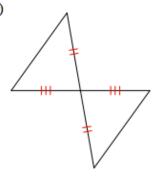

2)



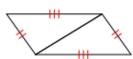

3)


4)

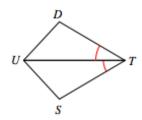




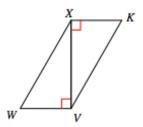
7)



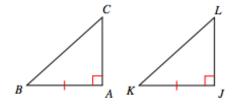
9)

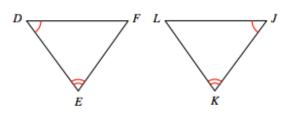


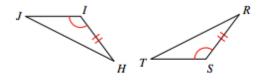
10)

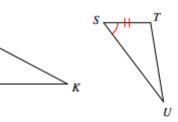


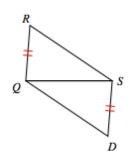
State what additional information is needed in order to know that the triangles are congruent for the given reason:

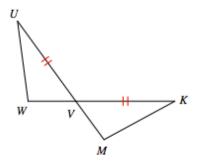

11) ASA


12) SAS

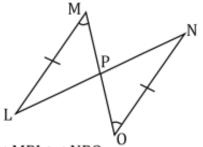

13) SAS


14) ASA


15) SAS


16) ASA

17) SSS

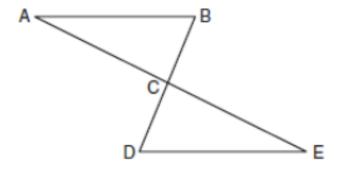


18) SAS

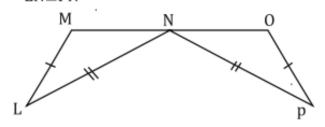
Fill in any missing pieces in the below proofs:

19. Given: $\overline{LM} \cong \overline{NO}$, and $\angle M \cong \angle O$

Prove: △MPL≅△NPO


Statements	Reasons
1. LM ≅ NO	1.
2.	2. Given
3.	3.
4.	4. AAS

Complete the following proofs:


21.

Given: C is the midpoint of BD and AE

Prove: $\triangle ABC \cong \triangle EDC$

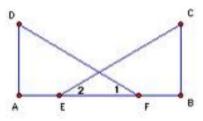
Given: N is the midpoint of \overline{MO} , $\overline{LM} \cong \overline{OP}$, and $\overline{LN} \cong \overline{PN}$

Prove: △LMN≅△PON

20.

Statements	Reasons
1. LM ≅ OP	1. Given
2. LN ≅ PN	2.
3. N is the Midpoint of MO	3. Given
4.	4. Midpoint
5.	5. SSS

22.

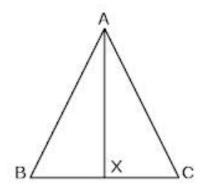

Given: ≰1≅≰2

DA \perp AB

CB ⊥ AB

AE≅BF

Prove: DF≅CE



23.

Given: Triangle ABC is isosceles with AB \cong AC

AX is a Median to BC

Prove: ∡BAX≅∡CAX

