\qquad
Date: \qquad Per: \qquad

Aim: How can we convert units and find density?

Do Now: Using your reference table, convert the following units.

1. 3 miles $=$ \qquad feet
2. \qquad tons $=6000$ pounds
3. \qquad gallons = 15.14 liters

Think, Pair, Share
How can we convert 3 gallons to cubic centimeters?

Think, Pair, Share

How can you find the area of the shape below and leave your answer in square centimeters?

Area= \qquad cm^{2}

Convert the following measurements (to the nearest tenth if necessary):
$8000 \mathrm{ft}=$ \qquad km
$176 \mathrm{oz}=$ \qquad kg

The density of a substance is the relationship between the \qquad of the substance and how much space it takes up \qquad _).

1. A rectangular solid has a volume of $40 \mathrm{~m}^{3}$. The mass of this solid is 300 grams. Given this information, calculate its density.
2. A rectangular piece of wood that measures 3.0 cm by 6.0 cm by 4.0 cm has a mass of 80.0 grams . What is the density (grams per cubic centimeter) of the wood? (to the nearest tenth)

Practice Problems

3. Find the volume of the figure below. Your answer should be in m^{3}.

4. If $1 \mathrm{~cm}^{3}$ of iron has a mass of 7.52 g , what is the mass of an iron bar of rectangular cross section with the dimensions shown?

5. If one guppy requires 5 L of water to live happily, what is the maximum number of guppies that should be kept in this aquarium?

6a. Walter wants to make 100 candles, each in the shape of a cone for his new candle business. The mold shown below will be used to make each candle. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

b. Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles?
7. A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is $1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer $(100 \mathrm{~cm}=1 \mathrm{~m})$

