\qquad Date: \qquad

Midterm Review Sheet (2018)

1. Which of the following is the value of the expression $\frac{x^{2}+4}{2}$ when $x=-2$?
(1) 0
(3) $-\frac{1}{2}$
(2) 2
(4) 4
2. If the expression $4 x+3$ is equal to 1 for some value of x, what is the expression $4 x+8$ equal to for the same value of x ?
(1) 6
(3) 8
(2) 11
(4) 7
3. The product $(x-10)(x+2)$ is equivalent to
(1) $x^{2}-20$
(3) $2 x-8$
(2) $x^{2}-8 x+20$
(4) $x^{2}-8 x-20$

4. Find the product of $(3 x+5)$ with $(2 x-3)$ in singlest form.

$$
\begin{gathered}
(3 x+2)(2 x=3) \\
6 x^{2}-9 x+10 x-15 \\
6 x^{2}+x-15
\end{gathered}
$$

5. Which of the following equations illustrates the associative property of addition?
(1) $(3+7)+(2+8)=(7+3)+(8+2)$
(2) $(5)(3 \cdot 4)=(5 \cdot 3)(4)$
(3) $(4+5)+5=4+10$
(4) $2(5+4)=10+8$
6.

Justify each of the following manipulations to combine two expressions by filling in the blanks with the associative property, the commutative property, or the distributive property.

$$
\begin{aligned}
5(2 x+1)+2(3 x+4) & =(10 x+5)+2(3 x+4) \\
& =(10 x+5)+(6 x+8) \\
& =10 x+(5+6 x)+8 \\
& =10 x+(6 x+5)+8 \\
& =(10 x+6 x)+(5+8) \\
& \begin{array}{l}
\text { Distributive } \\
\text { Distributive } \\
\downarrow \\
\text { Dssociative }
\end{array} \\
& =(10+6) x+(5+8) \\
& =16 x+13
\end{aligned}
$$

7.

The sum of three consecutive integers is 12 more than twice the largest integer. Which of the following equations could be used to find the three integers?
(1) $n+n+1+n+2=2 n+2+12$
(2) $n+n+2+n+4=2(n+4)+12$
(3) $n+n+1+n+3=2 n+3+12$
(4) $n+n+1+n+2=2(n+2)+12$
8.

If the inequality $-8<x \leq 10$ was placed in interval notation it would be represented by

$$
(-8,10]
$$

9. Which of the following graphs shows the solution set to $-2 x+8<12$?

10. The area of a triangle is given by the formula $A=\frac{1}{2} b h$. Solve this equation for the height, h, in terms of the base, b, and area, A.

$$
\begin{aligned}
2 \cdot A & =\frac{y}{2} b h \cdot 2 \\
\frac{2 A}{b} & =\frac{h p h}{h} \quad h=\frac{2 A}{b}
\end{aligned}
$$

${ }^{11}$. Solve the following equation for x. Show the manipulations that lead to your final answer.
ค(x-1)-2x-1=(x+15)+(x+16)

$$
\begin{aligned}
& 6 x+6-2 x-1=x+15+x+16 \\
& r=2 x+31 \rightarrow 2 x=?
\end{aligned}
$$

$$
\left.\begin{array}{l}
6 x+6-2 x-2 x+31 \\
\frac{-2 x+5}{}+\frac{2 x}{2}=\frac{26}{2} \\
\frac{-2 x}{2}=31
\end{array}\right]
$$

12. A function is initially defined by the set of coordinate pairs $\{(-3,5),(1,5), \$ 4,13)\}$. Which coors dinette pair below, if added to this set, prevents the set from representing a function?
(1) $(2,5)$
(3) $(-1,8)$
(2) $(5,0)$
(4) $(1,-4)$
13. What is the domain and range of the following function?

14.

Graph the piecewise function shown below on the axes provided. Show a table of values.
$f(x)=\left\{\begin{array}{cc}-2 x-4 & -4 \leq x<-1 \\ x-1 & -1 \leq x \leq 5\end{array}\right.$

15.

Which of the following is the equation of the inequality shown graphed below?
(1) $y<x+3$
(2) $y \leq x+3$
(3) $y>x+3$
(4) $y \geq x+3$

16.

If graphed in the coordinate plane, would the line $y=5 x-2$ pass through the point $(4,15)$? Explain how you arrived at your answer.

17.

Graph the line $3 y-2 x=3$ on the axes provided.

At what value of x does the line you graphed intersect the line $y=5$. Show how you determined your answer.

18. Given the following expressions:
I. $-\frac{5}{8}+\frac{3}{5}$
III. $(\sqrt{5}) \cdot(\sqrt{5})$
II. $\frac{1}{2}+\sqrt{2}$
IV. $3 \cdot(\sqrt{49})$

Which expression(s) result in an irrational number?
(1) II, only
(3) I, III, IV
(2) III, only
(4) II, III, IV
19. When $(2 x-3)^{2}$ is subtracted from $5 x^{2}$, the result is
(1) $x^{2}-12 x-9$
(3) $x^{2}+12 x-9$
(2) $x^{2}-12 x+9$
(4) $x^{2}+12 x+9$

