Name: \qquad
DO NOW:

Date: \qquad
$x y$
2. Is the point $(8,4)$ located on your graph? Circle a choice.

Yes
No
3. Prove your response from above algebraically in the space below:

$$
\begin{gathered}
y=\frac{1}{2} x-2 \\
4=\frac{1}{2}(8)-2 \\
4=4-2 \\
4 \neq 2
\end{gathered}
$$

1. Identify the slope and y-intercept of the inequality.
2. Plot the y-intercept, then use $\frac{\text { rise }}{\text { run }}$ (slope) to graph more points.
3. Connect your points (using a ruler) keeping in mind that:

$$
\begin{gathered}
\leq o r \\
\text { Dotted } / \text { Dusted Line } \\
\text { Usual Solid Line }
\end{gathered}
$$

4. Shade in the correct direction:

Write the inequality of the graph shown. Find your answer and color it according to your color chart. Not all answers will be used.

The unused answers are

$$
\frac{a+c}{x}=b
$$

Write the inequality of the graph shown. Find your answer in the puzzle and color that piece according to your color chart.

The unused answers are

2. $y \leq 4 x+2$

Answers in this box are

II. $y \geq \frac{1}{4} x+2$

12. $y>\frac{1}{2} x+1$

1. The sum of three consecutive integers is 123 . Find the three integers.
2. There are 461 students and 20 teachers taking buses on a trip to a museum. Each bus can seat a maximum of 52 . What is the least number of buses needed for the trip?
1) 8
2) 9
3) 10
4) 11
3. The graph below was created by an employee at a gas station.

Which statement can be justified by using the graph?
(1) If 10 gallons of gas was purchased, $\$ 35$ was paid.
(2) For every gallon of gas purchased, $\$ 3.75$ was paid.
(3) For every 2 gallons of gas purchased, $\$ 5.00$ was paid.
(4) If zero gallons of gas were purchased, zero miles were driven.
4. Which inequality is represented by the graph below?

(1) $y \leq 2 x-3$
(3) $y \leq-3 x+2$
(2) $y \geq 2 x-3$
(4) $y \geq-3 x+2$
5. Michael borrows money from his uncle, who is charging him simple interest using the formula $I=P r t$. To figure out what the interest rate, r, is, Michael rearranges the formula to find r. His new formula is r equals
(1) $\frac{I-P}{t}$
(3) $\frac{I}{P t}$
(2) $\frac{P-I}{t}$
(4) $\frac{P t}{I}$
6. Solve the following system:

$$
\begin{aligned}
& 5 x+y=9 \\
& 10 x-7 y=-18
\end{aligned}
$$

