
Date: Name: **EXPONENTIAL FUNCTIONS!** So far we have concentrated on linear functions which are characterized by having a constant rate of change. In the last lesson, we looked at exponential growth and decay. In this lesson we will more formally introduce the concept of an exponential function. **Do Now:** Consider the exponential function $f(x) = 8(2)^x$. Answer the following. (a) Evaluate each of the following and indicate what point must lie on the graph of f(x) based on each: (i) f(2) = 32 (ii) f(0) = \int (iii) $f(-1) = \mathbf{U}$ 2,32) $\Delta y = coordinate: (0, 8)$ coordinate: coordinate: (b) Calculate the average rate of change of f over (c) Calculate the average rate of change over the Calculate the average rate of change of y over the interval $-1 \le x \le 0$. **REAL RADIAN HP Coordinates** (-1,4) $\frac{\Delta y}{\Delta x} = \frac{8-4}{0+1} = (0,8)$ $\frac{\Delta y}{\Delta x} = \frac{32-8}{2-0}$ (0,8) $\frac{\Delta y}{4} = 4$ FLOAT AUTO REAL RADIAN MP FOR ATE X=-1 (d) What does comparing answers from (b) and (c) (e) Using your calculator, draw a sketch of this tell you about this function? Explain. function on the axes below using the window This function is getting steeper; indicated. 130 Tt's exponentio NORMAL FLOAT AUTO REAL RADIAN MA -10+

 $y = 8\left(\frac{2}{2}\right)$

Exponential functions are all about multiplication. The basic form of an exponential function is given below.

Exercise #4: Find the equation of the exponential function, in $y = a(b)^x$ form, for the function given in the table below. Show or explain your thinking.

x	0	1	2	3	4
У	10	30	90	270	810

When given coordinates (or a table of values), you have two strategies for finding an exponential functions:

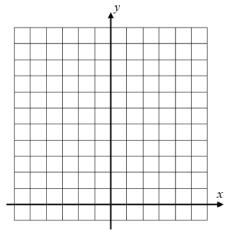
1.

Na	me:	Date:			
	INTRODUCTION TO EXPONENTIAL FUNCTIONS HOMEWORK				
1.	Consider the exponential function $f(x) = 10(2)^{x}$.				
	(a) Find the value of $f(0)$. What point does this represent on the graph of $y = f(x)$?	(b) Is this an increasing or decreasing exponential function? How can you tell based on its equation?			
	 (c) Is this function's average rate of change over the interval −1≤x≤2 greater or less than that of the linear function g(x)=10x+7? Justify. 	(d) Using your calculator, sketch a graph of this function on the axes shown below. Use the window indicated. Mark the <i>y</i> -intercept.			
		-3 _10			

2. Which of the following is a decreasing exponential function whose y-intercept is 20?

(1)
$$y = 20\left(\frac{4}{3}\right)^{x}$$
 (3) $y = -2x + 20$
(2) $y = 20\left(\frac{1}{2}\right)^{x}$ (4) $y = \left(\frac{1}{3}\right)^{x} + 20$

3. Which of the following functions would best describe the data in the table?

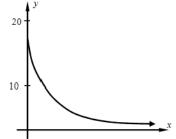

(1) $y = 10x + 2$	(3) $y = 5(2)^{x}$	x	0	1	2	3	4
(2) $y = 8x + 2$	(4) $y = 2(5)^{x}$	У	2	10	50	250	1250

- 4. Graphing a basic exponential can be challenging because of how quickly they grow (or decay). In this exercise, we will graph one of the most basic.
 - (a) Evaluate each of the following and state the coordinate point that occurs on the graph of f(x) based on the calculation.

 $f(x) = 2^x$

- f(0) = f(1) =
- f(2) = f(3) =
- (b) Evaluate each of the following. Remember your facts about negative exponents and give the point on the graph of f(x).

$$f(-1) = f(-2) = f(-3) =$$


- (c) Using the points you found in (a) and (b), graph this function for the domain interval $-3 \le x \le 3$.
- Classify each of the following exponential functions as either increasing or decreasing and give the value of their y-intercepts.

(a) $y = 125(1.25)^x$ (b) $y = 22\left(\frac{3}{4}\right)^x$ (c) $y = 256\left(\frac{5}{2}\right)^x$

6. Which of the following could be the equation of the exponential function shown graphed below? Explain your choice.

(1) $y = 15(1.25)^{x}$	(3) $y = 50(1.04)^{x}$
(2) $y = 18(0.75)^{x}$	(4) $y = 40(0.45)^{x}$

Explanation:

