Exponential functions are all about multiplication. The basic form of an exponential function is given below.

Exponential Functions

A general exponential function has the form: $y=a(b)^{x}$, where \boldsymbol{a} is the \boldsymbol{y}-intercept and \boldsymbol{b} is the base or multiplying factor. Sometimes b is known as the growth factor.

Let's work some more with exponential functions to develop a better sense for them.
Exercise \#2: Consider the function $g(x)=54\left(\frac{1}{3}\right)^{x}$.
(a) Evaluate $g(0)$. What point does this indicate on the graph of g ?
(b) Without the use of your calculator, determine the values of $g(1)$ and $g(2)$.
(c) Using your graphing calculator, sketch a graph of this function using the wINDOW $-2 \leq x \leq 4$ and $-10 \leq y \leq 100$. Mark the y-intercept.
(d) Why is this exponential function always decreasing while the one in Exercise \#1 is always increasing?

Increasing Vs. DECREASING EXPONENTIALS $y=a(b)^{x}$ will increase if \qquad
$y=a(b)^{x}$ will decrease if \qquad

Exercise \#3: For each of the following exponential functions, give its y-intercept and tell whether it is increasing or decreasing.
(a) $y=8\left(\frac{2}{3}\right)^{x}$
(b) $f(x)=125(1.5)^{x}$
(c) $P(t)=56\left(\frac{3}{2}\right)^{t}$
Decreasing
Increasing
$y-$-int: 125

Fncceasing

y-int: 8

$$
y \text {-int: } 56
$$

Exercise \#4: Find the equation of the exponential function, in $y=a(b)^{x}$ form, for the function given in the table below. Show or explain your thinking.

x	0	1	2	3	4
y	10	30	90	270	810

When given coordinates (or a table of values), you have two strategies for finding an exponential functions:
1.

Name: \qquad Date: \qquad

Introduction to Exponential Functions Homework

(1.) Consider the exponential function $f(x)=10(2)^{x}$.
$\sqrt{ }$ (a) Find the value of $f(0)$. What point does this represent on the graph of $y=f(x)$?

$$
\begin{aligned}
& 10 \cdot(2)^{0} \\
& 10 \cdot 1=10
\end{aligned}
$$

(c) Is this function's average rate of change over

$\frac{\Delta y}{\Delta x}$

 the interval $-1 \leq x \leq 2$ greater or less than that$$
\begin{aligned}
& \text { of the linear function } g(x)=10 x+7 \text { ? Justify. } \\
& 10(2)^{x \quad 10 x+7} \\
& (-1,5) \\
& (2,40) \\
& \begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{40-5}{2+1} \\
&=\frac{35}{3} \\
&=11.6 \\
& \text { GREAt TER }
\end{aligned} \quad \begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{-3-27}{-1-2} \\
& =\frac{-30}{-3} \\
& =10
\end{aligned}
\end{aligned}
$$

(b) Is this an increasing or decreasing exponential function? How can you tell based on its equation?
increasing
\$ growth factor > 1
(d) Using your calculator, sketch a graph of this function on the axes shown below. Use the window indicated. Mark the y-intercept.

2. Which of the following is a decreasing exponential function whose y-intercept is 20 ?
(1) $y=20\left(\frac{4}{3}\right)^{x}$
(3) $y=-2 x+20$
(2) $y=20\left(\frac{1}{2}\right)^{x}$
(4) $y=\left(\frac{1}{3}\right)^{x}+20$
3. Which of the following functions would best describe the data in the table?
(1) $y=10 x+2$
(3) $y=5(2)^{x}$
(2) $y=8 x+2$
(4) $y=2(5)^{x}$

x	0	1	2	3	4
y	2	10	50	250	1250

4. Graphing a basic exponential can be challenging because of how quickly they grow (or decay). In this exercise, we will graph one of the most basic.

$$
f(x)=2^{x}
$$

(a) Evaluate each of the following and state the coordinate point that occurs on the graph of $f(x)$ based on the calculation.
$f(0)=$
$f(1)=$
$f(2)=$
$f(3)=$
(b) Evaluate each of the following. Remember your facts about negative exponents and give the point on the graph of $f(x)$.

$f(-1)=$
$f(-2)=$
$f(-3)=$
(c) Using the points you found in (a) and (b), graph this function for the domain interval $-3 \leq x \leq 3$.
5. Classify each of the following exponential functions as either increasing or decreasing and give the value of their y-intercepts.
(a) $y=125(1.25)^{x}$
(b) $y=22\left(\frac{3}{4}\right)^{x}$
(c) $y=256\left(\frac{5}{2}\right)^{x}$
6. Which of the following could be the equation of the exponential function shown graphed below? Explain your choice.
(1) $y=15(1.25)^{x}$
(3) $y=50(1.04)^{x}$
(2) $y=18(0.75)^{x}$
(4) $y=40(0.45)^{x}$

Explanation:

