Name: \qquad Date: \qquad
Exponents, Exponents, and More Exponents - Review Sheet!
Part I Questions:

1. The expression $\frac{5 x^{9}}{10 x^{3}}$ can be simplified to
$x^{2} \cdot x^{8}$
(1) $2 x^{6}$
(3) $2 x^{3}$

$$
x^{10}
$$

(2) $\frac{1}{2} x^{6}$
(4) $\frac{1}{2} x^{3}$

$$
\begin{aligned}
\frac{5}{10}=\frac{1}{2} \quad \frac{x^{9}}{x^{3}} & =x^{9-3} \\
\frac{1}{2} x^{6} & =x^{6}
\end{aligned}
$$

2. Which of the following is equivalent to 2^{-3} ?
(1) -6
(3) -8
(2) $\frac{1}{6}$
(4) $\frac{1}{8}$

$$
\frac{1}{2^{3}}=\frac{1}{8}
$$

\qquad
\qquad
3. If $f\left(\underset{x}{\mathrm{x}}=10(2)^{x}\right.$ then which of the following represents the value of $f(0)$?
(1) 1 product
(2) 0

$$
\begin{aligned}
& 10 \cdot 2^{x} \\
& 10 \cdot 2^{0} \\
& 10 \cdot 1=10
\end{aligned}
$$

4. Which of the following is the equation of an increasing exponential function?
(1) $y=4(0.75)^{x}$
(3) $y=5 x-2$
(2) $y=7\left(\frac{3}{2}\right)^{x}$
(4) $y=4 x^{2}$
5. If Jordan had his hourly salary increase from $\$ 9.25$ per hour to $\$ 10.75$ per hour, which of the following is closest to the percent increase in Jordan's salary?
(1) 8%
(2) 14%
(3) 16%
(4) 19%

6. Which of the following could be the equation of the exponential function shown below?
x. $y=3(0.9)^{x}$
(2) $y=7(1.2)^{x}$

(3) $y=8(0.5)^{x}$
(2) is it inc. or de
7. The population of Ketcham High School has been decreasing by 5% per year. If its population is currently 2,600 students, which of the following is closest to its population two years from now?
(1) 2,340
(3) 2,470
(2) 2,347
(4) 2,590
$2600(1-.05)^{2}$ 2600(.95)2
8. A population of bacteria is increasing at a rate of 7.5% per hour. If there were originally 275 bacteria, which of the following equations models the population of bactera h-hours after the original 275 bacteria were measured?
(1) $P=275(7.5)^{h}$
(3) $P=1.075 h+275$
(2) $P=7.5(275)^{h}$
(4) $P=275(1.075)^{h}$
9. A radioactive material has a mass given by $m(t)=126(0.84)^{t}$, where the mass is in grams and the time, t, is in years. Which of the following gives the average rate of change of the mass over the interval $2 \leq t \leq 5$ years?
(1) -12.1 grams per year
(2) -36.2 grams per yea
(3) 18.3 grams per year
(4) 28.9 grams per year

Free Response Questions:
10. Simplify the following expression. Write it in two ways, one with the use of negative exponents and one with the use of a fraction (that doesn't have negative exponents).

$$
\begin{aligned}
\frac{\left(33^{3}\right)^{2}}{(6 x)(2 x)} & =\frac{3 x^{3} \cdot 3 x^{3}}{12 x^{2}} \\
& =\frac{9 x^{6}}{12 x^{2}}=\frac{3}{4} x^{4}
\end{aligned}
$$

12. An object's speed can be modeled with the equation $S=24(1.06)^{t}$, where S represents its speed in miles per hour and t represents the amount of time that has passed, in seconds. Give an interpretation of the parameters 24 and 1.06 from the equation.

$$
\begin{aligned}
& 24 \rightarrow \text { y-intercept } \cdot \underbrace{06} \Rightarrow 6 \% \\
& 1.06 \rightarrow \text { increasing (growth of } 6 \% \text {) }
\end{aligned}
$$

13. An exponential function, f, is shown in the table below. Determine an equation for it in $f(x)=a(b)^{x}$ form.

$$
y=13(3)^{x}
$$

14. Max deposits money into a savings account that earns 3.5% interest applied deposits $\$ 450$ into the account, how much money does the account hold after 5 -years if Max does not deposit or withdraw any additional money? Show how you arrived at your answer.

$$
\begin{array}{r}
y=a(b)^{x} \quad y=450(1+.035)^{5} \\
450(1.035)^{5} \\
=\$ 534.46
\end{array}
$$

15. Determine the equation of the exponential function shown graphed below. Explain how you arrived at your answer.

$$
\begin{array}{r}
y=a(b)^{x}(0,10) \\
y=10\left(\frac{1}{2}\right)^{x}(1,5) \\
E x p R e q \\
\quad(a / c u l a t o r
\end{array}
$$

16. A function passes through the points $(0,8)$ and $(1,24)$.
(a) Write the equation of a linear function that passes through these two points and write the equation of an exponential function that passes through these two points.

Linear, $y=m x+b$
Exponential, $y=a(b)^{x}$
(b) How much greater is the exponential function's value at $x=5$ than the linear function's value? Show how you arrived at your answer.

