Name: Date:

Sequences Day 2: Modeling Sequences!

Do Now:

During halftime at a football game, a high school marching band marches onto the field to perform a routine. There is one performer in the first row, four performers in the second row, and seven performers in the third row. This pattern continues for n rows.

(a) Create a sequence that represents the number of performers in each row.

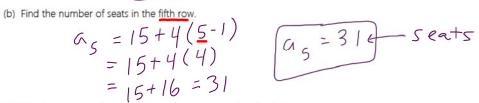
(b) Write an equation that can be used to find the number of performers in the nth row.

$$a_n = 1 + 3(n-1)$$

(c) How many performers are in the 6th row?

$$a_6 = 1+3(6-1)$$
 $a_6 = 1+3(5) = 16$

Problem Solving and Arithmetic Explicit Formulas


- 1) The first row of a theater has 15 seats in it. Each subsequent row has 4 more seats than the previous
 - (a) Write an equation that can be used to find the number of seats in the rth row.

$$a_1 = 15$$
 $a_n = a_1 + d(n-1)$
 $d = 4$ $a_n = 15 + 4(n-1)$

$$\alpha_{5} = 15 + 4(5 - 1)$$

$$= 15 + 4(4)$$

$$= 15 + 16 = 31$$

(c) If the last row has 83 seats, how many rows are in the theater?

$$a_{n} = 15 + 4(2-1)$$
 $83 = 15 + 4(n-1)$
 $83 = 15 + 4n - 4$
 $83 = 11 + 4n$
 -11
 $72 = 4n$
 4

$$a_n = 15 + 4(n-1)$$
 $a_{18} = 15 + 4(18-1)$
 $a_{18} = 83$

2) The height (in feet) of the water in a tank each hour after opening its drain can be estimated by the sequence displayed in the table below.

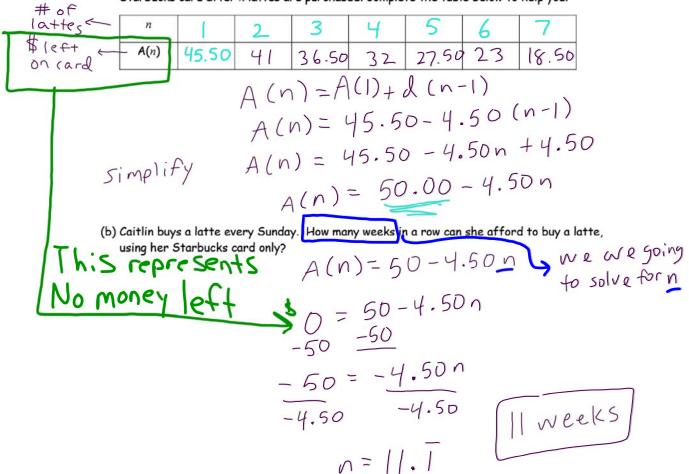
			10 X	2				
×	Hours (n)	1	2	3	4	5	6	7
Y	Water Height (and	18	15	12	9			
,					_			

(a) Write an explicit formula that represents the arithmetic sequence.

$$Q_1 = 18$$
 $Q_1 = 18 - 3(n-1)$ $Q_1 = -3$

(b) Find the seventh term. What does this value represent in the context of the situation?

$$\alpha_7 = 18 - 3(7 - 1)$$
 The tank $\alpha_7 = 18 - 3(6)$ The tank $\alpha_7 = 18 - 3(6)$ is empty. $\alpha_7 = 18 - 18$ $\alpha_7 = 0$ (c) Would the eighth term apply in this situation? Explain.


No, we can't have a negative amount = of water.

(d) Simplify the explicit formula from part (a). Compare and contrast both formulas.

(a) company the explorer formal and a company and company to the company of the c						
subscript gan	Simplify in the space	Original Formula	Simplified Formula			
	below U	α(n)=18-3(n-1)	a(n)=21-3n			
function ->	a(n) = 18-3(n-1)		arison (same)			
	a(n) = 18 - 3n + 3	W CONT	2			
	a(n) = 21 - 3n		have -3			
		(com	non dift) hange			
		· <+ i []	har			
		(01	+rast			
		. star	ting point ifterent			
		is d	iffe(en+			

(e) What was the height of the water in the tank before the drain was opened?

- 3) Caitlin is given a <u>Starbucks card worth \$50</u>. After she purchases a latte, the card's value is \$45.50. After she purchases a second latte, its value is \$41.
 - (a) Assuming the pattern continues, write an equation A(n), the amount of money on the Starbucks card after n lattes are purchased. Complete the table below to help you.

CONCLUSION!

Arithmetic sequences represent linear relationships. These sequences can be defined using the formula $\frac{(n) = (1) + \lambda (n-1)}{(n-1)}$. In the formula, \mathbf{a}_1 represents the first $\frac{+\ell \cap \mathcal{N}}{n}$ and $\frac{d}{n}$ represents the common difference. These sequences can also be defined using the linear function rule $\mathbf{a}_n = \mathbf{m} + \mathbf{b}$ where $\frac{\mathbf{n}_1 - \mathbf{n}_2}{n}$ represents the common difference and $\frac{d}{n}$ represents the term $\frac{d}{n}$

Homework!

1)		Vrite an equation for the n th term of the arithmetic sequence7, -8.5, -10, -11.5, Using your formula, find a_{12} .
2)		e first row of a dominos display has 10 dominos. Each row after the first has two more dominos than a row before it.
	a)	Write the first five terms of the sequence that represents the number of dominos in each row.
	b)	Write an equation that can be used to find the number of dominos in the //th row.
	c)	Find the number of dominos in the $15^{\mbox{\scriptsize th}}$ row.
	d)	What row has 60 dominos in it?

3) During a science experiment, the temperature of a liquid substance increased 2°F every hour. After the first hour, the temperature was 56°F. Carry and Carl each wrote an equation that can be used to find the temperature of the substance after the *r*th hour.

Carry's Equation

Carl's Equation

$$a_n = 56 + 2(n-1)$$

- $a_n = 2n + 54$
- (a) Are the equations equivalent? Justify your response.

- (b) What does 56 represent in Carry's equation?
- (c) What does 54 represent in Carl's equation?
- (d) What does the coefficient 2 represent in both equations?