Name: \qquad

Do Now:
a) Use the figure pictured below to complete the table.

\boldsymbol{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\boldsymbol{y} (number of dots)	2	4	6	8	10

b) Plot the points from the table onto the graph.

Date: \qquad

> 100 K at axes
c) Does it make sense to connect the points? Be ready to justify your response.

$$
\begin{aligned}
& \text { Ike sense to connect the points? Be ready to justify your response. } \\
& \text { No. We cannot have parts of } n \text { or dots... }
\end{aligned}
$$

Graphing Sequences

- the term's position number, n, in the sequence is graphed as the x-value
- the term a_{n} is graphed as the corresponding y-value
- plot the ordered pairs $\left(n, a_{n}\right)$
- graph as a scatter plot (do not connect the dots).

Consider the arithmetic sequence $2,6,10, \ldots$
a. Create a table of values for the sequence.
b. Write an explicit formula that represents the sequence.
c. Graph the sequence.
d. What is the slope of the line?

n	a_{n}
1	2
2	6
3	10
4	14

Explicit Formula

Graphing Arithmetic Sequences \rightarrow common
difference
(1) Online bidding for a purse increases by $\$ 5$ for each bid after the first person bids $\$ 60$.
explicit
(a) Write a function rule that represents the arithmetic sequence.
(b) Graph the function.

Graph the function.	
\boldsymbol{n} ? 1 2 3$\$ 60$	
4	$\$ 75$

Bid number

(c) If the winning bid was $\$ 105$, how many bids were there?
$105=55+5 n$

$$
\begin{aligned}
& a_{n}=60+5(n-1) \\
& 105=60+5(n-1) \\
& 105=60+5 n-5 \\
& 105=55+5 n
\end{aligned}
$$

(2) The amount of money a movie earns each week after its release can be approximated by the sequence shown in the coordinates graph.

n	a_{n}
1	56
2	48
3	40
4	32

(a) Write a function rule that represents the arithmetic sequence.
$-8 \quad a_{n}=a_{1}+d(n-1)$
$a_{n}=56-8(n-1)$
(b) In what week does the movie earn $\$ 16$ million dollars?
n

$$
\begin{aligned}
& a_{n}=56-8(n-1)^{n} \\
& a_{n}=56-8(n-1) \\
& 16=
\end{aligned}
$$

The points of the graph of an arithmetic sequence form a \qquad The Slope of the line is the common difference.
(1) Write a sequence that represents the number of smiley faces in each group. Is the sequence arithmetic? Explain.

() () (2) ()	(:) (2) ()	(2)
())	())	())

(2) Use the figure to complete the table and plot the points.

Number of stars, \boldsymbol{n}	1	2	3	4	5
Number of sides, \boldsymbol{y}					

Write an equation that models the pattern displayed by the figure.
(3) A carnival charges $\$ 2$ for each game after you pay a $\$ 5$ entry fee.
(a) Write a function rule that represents the situation.
(b) Graph the function.

(c) How many games can you play when you take $\$ 29$ to the carnival?

