\qquad Date: \qquad

Recursive Sequences Day 2

Do Now:

Determine if the sequence below is arithmetic or geometric. For each sequence write an explicit rule that can be used to find the nth term of the sequence.
a) $4,7,10,13, \ldots$ ARITHMETIC
b) $1,3,9,27, \ldots$
GEOMETRIC

$$
a_{n}=1 \cdot(3)^{n-1}
$$

$a_{n}=4+3(n-1)$

Arithmetic and Geometric Sequences can be defined Recursively and Explicitly

Let's take a closer look at the sequences from the Do Now.

Can the sequence $4,7,10,13, \ldots$ be defined with a recursive rule?

$$
\text { (1) } a_{n}=a_{n-1}+3 \quad \text { (2) } a_{1}=4
$$

Can the sequence $1,3,9,27, \ldots$ be defined with a recursive rule?

$$
a_{n}=a_{n-1} \cdot 3
$$

Writing Rules to Generate Arithmetic and Geometric Sequences

Write dreaursive formula) for the following sequences. GEOMETRIC

1) $100,96,92, \ldots \quad$ ARITHMETIC
2) $200,40,8, \ldots \quad r=\frac{1}{5}$

$$
\begin{aligned}
& a_{1}=100 \\
& a_{n}=a_{n-1}-4
\end{aligned}
$$

Find the first 3 terms in each sequence below.
3) $a_{n}=a_{n-1}-0.25$ and $a_{1}=3.5$

$$
\frac{3.5}{a_{1}}, \frac{3.25}{}, 3
$$

$$
a_{1}=200
$$

$$
a_{n}=a_{n-1} \cdot \frac{1}{5}
$$

$$
a_{n}=a_{n-1} \div 5
$$

4) $a_{n}=a_{n+1} \cdot 4$ and $a_{1}=\frac{1}{8}$
$\frac{.125}{a_{1}}, \frac{.5}{\frac{1}{8}}, \frac{2}{\frac{1}{2}}, 2^{\text {thy }}{ }^{\text {th }}$ a sequence.

shaded: $12,16,20$
boxes
Which of the following rules can be used to define the sequence? Select all that apply.
Justify your response.

$$
4(1)+8=12
$$

(A.) $a_{n}=a_{n-1}+4 ; a_{1}=12$
(B.) $a_{n}=4 n+8$
C. $a_{n+1}=a_{n}+4 ; a_{1}=12$

Recursive Rule
(D.) $a_{n}=12+4(n-1)$
E. $a_{n}=a_{n-1}+12 ; a_{1}=4$
F. $a_{n}=4+12(n-1)$

$$
\begin{aligned}
& a_{n}=a_{1}+d(n-1) \\
& \text { Explicit Rule }
\end{aligned}
$$

$\begin{gathered}\uparrow+?\end{gathered}$
first term

$$
\begin{aligned}
& i \text { isttelm } \\
& \text { is } 12 \text { not } 4
\end{aligned}
$$

CONCLUSION!
Sequences defined recursively use the \qquad terms) to find the next term of the sequence.
(1) $a_{1}=$
Sequences defined explicitly use the explicit formula to find the nth term.

HOMEWORK!

Given the following formulas, find the first 4 terms.

1. $t_{1}=0$
$t_{n}=t_{n-1}+6$
2. $t_{1}=-4$
$t_{n}=t_{n-1}+2$
3. $\begin{aligned} & t_{1}=8 \\ & t_{n}=t_{n-1}-4\end{aligned}$
4. $t_{n}=3 n-1$

$$
\begin{array}{cc}
1=3 n-1 & 3(2)-1 \\
3(1)-1 & 3 \\
3-1=2 & 6-1=5
\end{array}
$$

5. $t_{n}=4 n+3$
6. $t_{n}=-5 n+2$

There's more on the next page, but I still wanted to fill this space with something.

7. Write an explicit and recursive formula for the following sequences.
a. $-4,-6,-8,-10 \ldots$

Explicit: \qquad

Recursive: \qquad
c. $19,13,7,1 \ldots$

Explicit: \qquad

Recursive: \qquad
e. $-3,-1,1,3 \ldots$

Explicit: \qquad

Recursive: \qquad
b. $84,71,58,45 \ldots$

Explicit: \qquad

Recursive: \qquad
d. $9,17,25,33 \ldots$

Explicit: \qquad

Recursive: \qquad
f. $110,88,66,44 \ldots$

Explicit: \qquad

Recursive \qquad

