CONCLUSION!

Sequences defined recursively use the \qquad term(s) to find the next term of the sequence.

Sequences defined explicitly use the explicit formula to find the nth term.

HOMEWORK!

Given the following formulas, find the first 4 terms.

1. $\begin{aligned} & t_{1}=0 \\ & t_{n}=t_{m-1}+6\end{aligned} 0,6,12,18$
2. $\begin{aligned} & t_{1}=-4 \\ & t_{n}=t_{n-1}+2\end{aligned}-4,-2,0,2$
3. $\begin{aligned} t_{1} & =8 \\ t_{n} & =t_{n-1}-4 \\ & 8,4,0,-4\end{aligned}$
4. $t_{n}=3 n-1$
5. $t_{n}=4 n+3$
$7,11,15,19$
6. $t_{n}=-5 n+2$
$-3,-8,-13,-18$

There's more on the next page, but I still wanted to fill this space with something.

7. Write an explicit and recursive formula for the following sequences. d
a. $-4,-6,-8,-10 \ldots$
Explicit: $a_{n}=-4-2(n-1)_{\text {Explicit: }} \quad a_{n}=84,71,58,45 \ldots \quad \downarrow$

$$
\text { Recursive: } \begin{aligned}
& a_{1}=-4 \\
& a_{n}=a_{n-1}-2
\end{aligned} \begin{aligned}
& a_{1}=84 \\
& a_{n}=a_{n-1}-13
\end{aligned}
$$

c. $19,13,7,1 \ldots$

Explicit: \qquad

Recursive: \qquad
d. $9,17,25,33 \ldots$

Explicit: \qquad

Recursive: \qquad
e. $-3,-1,1,3 \ldots$

Explicit: $a_{n}=-3+2(n-1)_{\text {Explicit: }}^{\text {f. } 110,88,66,44 \ldots}$ Recursive: $\quad a_{1}=-3$ Recursive \qquad

$$
a_{n}=a_{n-1}+2
$$

Sequences Practice Worksheet

Name \qquad Class Period Arithmetic Sequences: A sequence of terms that have a common difF. between them.

Formula: $a_{n}=a_{1}+(n-1) \cdot d$ where a_{1} is the first number in the sequence and d is the common difference.
Geometric Sequences: A sequence of terms that have a common ratio between them.

Formula: $a_{n}=a_{1}(r)^{n-1}$ where a_{1} is the first number in the sequence and r is the common ratio.

Are the following sequences, arithmetic, geometric, or neither? *If they are arithmetic, state the value of d. *ll they are geometric, state r.
I. $6,12,18,24, \ldots$

\qquad
2. $6,11,17, \ldots$
type:

d or $r:$ \qquad
3. $2,14,98,686, \ldots$
type:

4. $160,80,40,20, \ldots$
type:

5. $-40,-25,-10,5, \ldots$
type:

6. 7, -21, 63, -189,...
type:

For the following sequences, find σ_{7} and d and state the formula for the general term. Don't forget to simplify l
7. -10, -4, 2, 8, 14, ...
$a_{1}=$ \qquad $d=$ \qquad Formula:
$a_{1}=$
$a_{n}=a_{n-1}$
8. $10,8,6,4, \ldots$
$a_{1}=$ \qquad $d=$ \qquad Formula:
$a_{1}=$
$a_{n}=a_{n-1}$
9. $36,31,26,21, \ldots$
$a_{1}=$ \qquad
da \qquad
formula: $\sigma_{1}=$

$$
a_{n}=a_{n-1}
$$

10. Use the formula from question \#9 to find the value of a_{7} and a_{20}

For the following sequences, find α_{1} and r and state the formula for the general term. Don't forget to simplify!

14. Use the formula from question \#13 to find the value of a_{4} and a_{12}.

Decide il each of the following scenarios describes an arithmetic or geometric sequence. Then, write the formula for the sequence.

15. A student comes to school with the flu and infects three other students within an hour before going home. Each newly infected student passes the virus to three new students in the next hour. This pattern continues until all students in the school are infected with the virus.

Type: \qquad Formula: \qquad
16. Round 1 of a tennis tournament starts with 128 players. After each round, half the players have lost and are eliminated from the tournament. Therefore, in round 2 there are 64 players. in round 3 there are 32 players and so on.

Type: \qquad Formula: \qquad
17. Paul has $\$ 680$ in a savings account. He makes a deposit after he receives each paycheck. After one month he has $\$ 758$ in the account. The next month the balance is $\$ 836$. The balance after the third month is $\$ 914$.

Type: \qquad formula: \qquad
18. The table shows the number of country club members for four years after it began.

Time(yrs)	0	1	2	3	4
Members	100	200	300	400	500

Type: \qquad Formula: \qquad

