Name: \qquad Date:

We should now have a better ability to work with exponents. In this lesson we will continue to explore expressions that are equivalent but look different. We will be primarily sticking with linear expressions (those where x is only raised to the first power) and quadratic expressions (where x is raised to the second power). Recall that two expressions are equivalent if they return equal values when values are substituted into them.

Exercise \#1: Consider the product $(x-2)(x+5)$. It is equivalent to one of the expressions below. Determine which by substituting in two values of x to check.

	$(x-2)(x+5)$	$x^{2}-10$	$x^{2}+3 x-10$
$x=3$			
$x=5$			

The last exercise is pretty interesting. It would seem that if you were just mindlessly manipulating the product of the two binomials, then you would likely think two expressions were equivalent, when they are not. Let's find out in the next exercise how to multiply out two simple binomials using a variety of properties.

Keep in mind that below you are simply doing the distributive property twice.
Exercise \#2: Write out each of the following as equivalent trinomials (an expression involving three terms).
(a) $(x+6)(x+3)$
(b) $(x-4)(x+6)$
(c)

$x^{2}+6 x-4 x-24$
$x^{2}+2 x-24$

(d)

(1) (3) multiply

Exercise \#3: Jeremy has noticed a pattern that he thinks is always true. If he picks any number and finds the product of one number larger and one number smaller than it, the result is always one less than the square of his number.
(a) Test some numbers out and see if Jeremy's pattern holds.
(b) Give an algebraic explanation that shows that Jeremy's pattern will work for any number. Use let statements to clearly define your variables.

Exercise \#4: Which of the following expressions is equivalent to the product $(x-2)(x-4)$? Show the calculations that you use to find your choice and test using a value of x.
(1) $x^{2}+8$
(3) $x^{2}-6 x+8$
(2) $x^{2}-6 x-8$
(4) $x^{2}-8$

Name: \qquad Date: \qquad

More Complex Equivalency Homework

1. Rewrite each expression as a simpler, equivalent expression by first using the Distributive Property and then combining terms.
(a) $x(x-2)$
(b) $x(x+6)+3(x+6)$
(c) $(x+3)(x+6)$
(d) $4 x(2 x+3)$
(e) $(3 x-4)(3 x+2)$
(f) $(x+3)(x-3)$
(g) $(3 x+4)(2 x-1)$
(h) $(x-3)(x-3)$
(i) $(x-2)^{2}$
2. Which of the following expressions is equivalent to $(x+7)^{2}$? Test with a value of x. Show your test.
(1) $x^{2}+49$
(3) $(x+7)(x+7)$
(2) $(x-7)(x+7)$
(4) $(7 x)(7 x)$
