

$$
\begin{aligned}
& A:(5,6) \text { rise } 10 \\
& \text { B: }(-5,5) \text { run } 2 \\
& C:(-2,3) \\
& D:(-2,-2) \\
& E:(3,-4) \\
& F:(2,-6) \text { rise }=\frac{2}{-5} \\
& \frac{2}{\text { run }} \frac{-2}{5} \\
&-\frac{2}{5}
\end{aligned}
$$

Name: \qquad
Writing Equations of Lines in Slope-Intercept Form

One skill that we need to become fluent at in Algebra I is creating the equation of a linear function. We will concentrate on learning how to form equations in the slope-intercept form that we have been working with.

The Slope-Intercept Form of a Linear Function
Given a linear function, $f(x)$, it can be expressed in equation form by:

$$
y=m x+b
$$

where the two parameters are $m=$ average rate of change $=$ slope $=\frac{\Delta y}{\Delta x}$ and $b=y$-intercept of the line
Exercise \#1: Consider the linear function whose graph is shown below.
(a) Determine an equation in the form $y=m x+b$ for this line.

$$
y=\frac{3}{2} x+2
$$

(b) Test your equation for the value $x=2$.

$$
\begin{aligned}
& y=\frac{3}{2} x+2 \\
& y=\frac{3}{2}(2)+2 \quad y=3+2 \quad y=5
\end{aligned}
$$

When you encounter a line, always know that it has a direct association to a \qquad
There are 3 aspects of a linear equation (in slope intercept form) that are CRUCIAL!
Slope
Y -Intercept

$$
(2,5)
$$

When the y-intercept is an integer, such as in the last exercise, it is fairly easy to get the exact relationship between x and y. Let's try another graphical problem where the y-intercept is not an integer.

Exercise \#2: Find the equation of the linear function shown in ropeintercept form. Test your equation for $x=-4$.

We need to also be able to find the equation for a linear function if we know two points that lie on it. Notice that this means we have to determine the value of the two parameters with two pieces of information.

Exercise \#3: Find the equation of the line that passes through each of the following pairs of points in

$$
\begin{align*}
& m=\frac{\Delta y}{\Delta x}=\frac{17-5}{5-2} \quad y=4 x+b \\
& =\frac{12}{3}=4 \tag{2}\\
& 5=4(2)+b \frac{\Delta y}{\Delta x}=\frac{5-3}{-2-2}=-\frac{2}{-4}=-\frac{1}{2} \\
& \text { (c) }(-1,11) \text { and }(4,-4) \\
& \text { (d) }(3,4) \text { and }(12,19)
\end{align*}
$$

Name: \qquad

Writing Equations in Slope-Intercept Form
 Homework...!

Fluency

1. Each of the following lines has a slope and y-intercept that can be determined by examining the graph. For each, state the slope, the y-intercept, and then write the equation in $y=m x+b$ form (slope-intercept form).
(a)

Slope: \qquad
y-intercept: \qquad
Equation: \qquad
(b)

Slope: \qquad
y-intercept: \qquad
Equation: \qquad
2. Each of the following lines has a slope that can be determined by examining the graph. Use another point on the line to solve for the exact y-intercept. Then, state the equation of the line.
(a)

Slope: $\frac{3}{4}$
Solve for y-intercept:

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{3}{4} x+b
\end{aligned}
$$

Slope: \qquad
Solve for the y-intercept:

$$
\text { Equation: } \quad 2=\frac{3}{4}(1)+b
$$

Equation: \qquad
3. Find the equation of the line that passes through each of the following pairs of points in $y=m x+b$ form.
(a) $(1,7)$ and $(4,22)$
(b) $(-2,13)$ and $(2,3)$
$3-4=11$

(c) $(4,6)$ and $(10,0)$
(d) $(0,-10)$ and $(16,2)$

