Name: \qquad Date: \qquad
The real Truth About Graphs...
At this point we've looked at graphs of linear functions and more general functions as simply being plots of input/output pairs. And, for functions, this makes a lot of sense. But, more generally, we want to be able to define points that lie on the graph of an equation or on an inequality with a simple test/definition.

Do Now: Consider the linear equation $y=4 x+2$. $x \quad y$
(a) Does the point $(2,10)$ lie on the graph of this
(b) Does the pooh $(-1,4)$ lie on the graph of this equation? Justify your answer.

$$
\begin{gathered}
y=4 x+2 \\
10=4(2)+2 \\
10=8+2 \\
10=10
\end{gathered}
$$ equation? Justify y y answer.

$$
\begin{aligned}
& y=4 x+2 \\
& 4=4(-1)+2 \\
& y=-4+2
\end{aligned}
$$

Graphing Equations and Inequalities
The connection between graphs and equations/inequalities is a simple one:

1. Any coordinate pair (x, y) that makes the equation or inequality true lies on the graph.
2. The entire graph is a collection of all of the (x, y) pairs that make the equation or inequality true.

Exercise \#2: The equation $y=2 x^{2}-x+5$ describes a parabola. Does the point $(3,20)$ lie on its graph? Use your graphing calculator to answer this question.

$$
\begin{gathered}
20=2(3)^{2}-(3)+5 \\
20=2(9)-3+5 \\
20=18-3+5
\end{gathered}
$$

Inequalities can also be graphed and we will concentrate on that in the next lesson. But, in this lesson we can certainly determine if particular points will lie on the graph of an inequality.
Exercise \#3: Determine for each of the following inequalities whether the point given lies on its graph.
(a) $(4,1)$ for $y>2 x-5$
(b) $(2,8)$ for $x+y \leq 10$

$$
(2)+(8) \leq 10
$$

$$
10 \leqq 10
$$

10 is equal to 10 True "

We can even determine, with some additional calculations, whether a point is a solution to a system of equations or a system of inequalities. You've studied systems before and we will devote the next unit to them. But, with a simple definition you can "easily" tell whether points are solutions.

Systems of Equations
A system of equations is a collection of two or more equations joined by the AND truth condition. Because the AND condition is only true when all of its components are true, the solution set of a system is:

That is an extremely important idea. Let's test it out in the next exercise:

Exercise \#4: Determine if the point $(3,1)$ is a solution to the system of equations shown below. Justify your

an

$$
\begin{aligned}
& \text { Yes, }(3,1) \text { is } \\
& \text { a solution. It's } \\
& \text { where the lines } \\
& \text { meet (coss). }
\end{aligned}
$$

Name: \qquad Date: \qquad

The Truth About Graphs Homework!

1. Which of the following points lies on the graph of $y=3 x-5$?
(1) $(1,-5)$
(3) $(4,7)$
(2) $(2,0)$
(4) $(5,5)$
2. Which of the following points does not lie on the graph of $y=\frac{1}{2} x+3$?
(1) $(10,8)$
(3) $(0,3)$
(2) $(-2,2)$
(4) $(-6,-3)$
3. Which of the following points would not lie on the line $y=7$?
(1) $(-2,7)$
(3) $(0,7)$
(2) $(7,-1)$
(4) $(5,7)$
4. For the inequality $y>4 x+1$ determine if each of the following points does or doesn't lie in its solution. Show the work that leads to your answer.
(a) $(2,15)$
(b) $(4,10)$
(c) $(0,1)$
(d) $(-3,-8)$
5. Determine if the point $(4,7)$ is a solution to the system of equations shown below. Justify your yes/no answer.

$$
\begin{aligned}
& y=2 x-1 \\
& \text { and } \\
& y=\frac{1}{2} x+5
\end{aligned}
$$

