

GEOMETRY (COMMON CORE)

FACTS YOU MUST KNOW COLD FOR THE REGENTS EXAM

Geometry [Common Core] Regents Exam Study Guide

Polygons - Interior/Exterior Angles
Sum of Interior Angles: 180 (n-2)
Each Interior Angle of a Regular Polygon:
180 ($n-2$)
n
Sum of Exterior Angles: 360°
Each Exterior Angle: $\frac{\mathbf{3 6 0}}{n}$

Triangles

Classifying Triangles

Sides:

Scalene: No congruent sides Isosceles: 2 congruent sides
Equilateral: 3 congruent sides

Angles:

Acute: All angles are < 90°
Right: One right angle that is 90°
Obtuse: One angle that is $>90^{\circ}$
Equiangular: 3 congruent angles (60°)

All triangles have 180°

Exterior Angle Theorem:

The exterior angle is equal to the sum of the two non-adjacent interior angles.

$$
\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 3
$$

Midsegment: segment joining the midpoints
> Always parallel to the third side
$>\frac{1}{2}$ the length of the third side
$>$ Splits the triangle into two similar triangles.

Coordinate Geometry

Standard Form of a Line: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$, where m is the slope and b is the y -intercept.
Slope Formula: $\boldsymbol{m}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slopes:

Positive

No Slope/Undefíned

Parallel Lines have the SAME slope
Perpendicular Lines have NEGATIVE RECIPROCAL slopes (flip \& change the sign)
Collinear Points are points that lie of the same line.
Midpoint Formula: $\quad M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Segment Ratios:

$$
\frac{x-x_{1}}{x_{2}-x}=\text { Given Ratio } \frac{y-y_{1}}{y_{2}-y}=\text { Given Ratio }
$$

Pythagorean Theorem
To find the missing side of any right triangle, use:

$$
a^{2}+b^{2}=c^{2}
$$

where a and b are the legs, and c is the hypotenuse

Isosceles Triangle

> $2 \cong$ sides and $2 \cong$ base angles
> The altitude drawn from the vertex is also the median and angle bisector
> If two sides of a triangle are \cong, then the angles opposite those \cong sides are \cong.

Triangle Inequality Theorems

> The sum of 2 sides must be greater than the third side
> The difference of 2 sides must be less than the third side
> The longest side is opposite the largest angle
> The shortest side is opposite the smallest angle

Parallel Lines
Alternate Interior angles are congruent

Alternate Exterior angles are congruent

Corresponding angles are congruent

Same-Side Interior angles are supplementary

Side - Splitter Theorem

If a line is parallel to a side of a triangle and intersects the other two sides, then this line divides those two sides proportionally.

Triangle Congruence Theorems

Side-Side-Side (SSS)

Side-Angle-Side (SAS)

Angle-Side-Angle (ASA)

Angle-Angle-Side (AAS)

Hypotenuse-Leg (HL)

CPCTC - Corresponding Parts of Congruent Triangles are Congruent

Similar Triangle Theorems

Angle-Angle (aa)

Side-Angle-Side (SAS)

> Similar figures have congruent angles and proportional sides
> CSSTP-Corresponding Sides of Similar Triangles are in Proportion
$>$ In a proportion, the product of the means equals the product of the extremes

Geometric Mean Theorems

Altitude Theorem (SAAS / Heartbeat Method):

The altitude is the geometric mean between
the 2 segments of the hypotenuse.

$$
\frac{S_{1}}{a}=\frac{a}{S_{2}}
$$

Leg Theorem (HYLLS / PSSW):

The leg is the geometric mean between the segment It touches and the whole hypotenuse.

$$
\frac{S_{1}}{L_{1}}=\frac{L_{1}}{H} \quad \text { and } \quad \frac{S_{2}}{L_{1}}=\frac{L_{2}}{H}
$$

Trigonometry

> When solving for a side, use the \sin , \cos, and tan buttons
> When solving for an angle, use the $\sin ^{-1}, \cos ^{-1}$, and tan $^{-1}$ buttons

Cofunctions:

> Sine and Cosine are cofunctions, which are complementary

$$
\begin{aligned}
& \sin \theta=\cos \left(90^{\circ}-\theta\right) \\
& \cos \theta=\sin \left(90^{\circ}-\theta\right)
\end{aligned}
$$

$>$ If $\angle A$ and $\angle B$ are the acute angles of a right triangle, then $\boldsymbol{\operatorname { s i n }} \boldsymbol{A}=\boldsymbol{\operatorname { c o s }} B$

Factoring

The order of Factoring:
Greatest Common Factor (GCF)

Difference of Two Perfect Squares
(DOTS)

Trinomial (TRI)

GCF:

$$
a b+a c=a(b+c)
$$

DOTS:

$$
x^{2}-y^{2}=(x+y)(x-y)
$$

TRI:

$$
x^{2}-x+6 \text { » }(x+2)(x-3)
$$

Angles

Central Angle:

$$
\not x x=\widehat{A B}
$$

Inscribed Angle: Tangent-Chord Angle:

$$
\Varangle x=\frac{1}{2} \widehat{A C}
$$

$\Varangle x=\frac{1}{2} \widehat{A C}$

$$
\frac{\widehat{B l g}-\widehat{\text { Little }}}{2}=\Varangle x
$$

Two Chord Angles:

Tangent-Radius Angle $=90^{\circ}$

Circles (Con't)

$$
A=\frac{1}{2} r^{2} \theta
$$

where A is the area of the sector, r is the radius, and θ is an angle in radians.

Sector Length

$$
s=r \theta
$$

where s is the sector length, r is the radius, and θ is an angle in radians.

3D Figures

Prism

Pyramid

Cylinder

Cone

Sphere

Cross Sections

Nets

The Quadrilateral Family Tree

Isosceles Trapezoid

- each pair of base angles are \cong
- diagonals are \cong
- one pair of \cong sides, the legs (not the parallel sides which are called the bases)

Parallelogram

- opposite sides are ||
- opposite sides are \cong
- opposite angles are \cong
- consecutive angles $=180^{\circ}$
- diagonals bisect each other
e \cong

Rectangle - all angles are right angles
.- diagonals are \cong

Rhombus

- all sides are \cong
- diagonals are \perp (perpendicular)
- diagonals bisect opposite angles
- all angles are right angles
- diagonals are \cong
- all sides are \cong
- diagonals are \perp
- diagonals bisect opposite angles
Cosp a line segment

