\qquad
Functions Unit! Review Sheet.

Part I Questions:

1. If $f(x)=-2 x^{2}+3$ then $f(-3)=$
(1) -15
(3) 39
(2) 21
(4) -18

2. Which of the following sets of coordinate pairs is not a relationship where y is a function of x ?
(1) $\{(-3,1),(0,5),(2,7),(5,1)\}$
(2) $\{(-2,4),(-1,0),(1,7),(-2,-4)\}$
(3) $\{(-3,10),(-2,5),(1,2),(2,5)\}$
(4) $\{(4,16),(5,25),(7,49),(10,100)\}$
3. Jenna is selling glasses of lemonade for $\$ 1.50$ per cup. She begins the day with $\$ 4.50$ in change. The amount of money, m, she has as a function of the number of cups she sells is $m=1.50 c+4.50$. Which of the following would be an appropriate domain for this function?
(1) $\{-3,-2,-1,0,1,2,3\}$
(2) $\{1,1.5,2,2.5,3,3.5\}$
(3) $\{0,1,2,3,4,5,6\}$
(4) $\{4.50,6.00,7.50,9.00,10.50\}$
4. Which of the following represents the range of the function shown in the graph below?
(1) $(-4,5]$
(2) $[-4,5)$
(3) $[-2,3)$
(4) $(-2,3]$

5. Which of the following represents the average rate of change for the function $f(x)=x^{2}$ over the interval $1 \leq x \leq 3$?
(1) 8
(3) 6
(2) 2
(4) 4
6. For the function $f(x)$ shown below, which of the following represents the interval over which $f(x)<0$?
(1) $-2<x<4$
(2) $-2 \leq x \leq 4$
(3) $-4<x<0$
(4) $-4 \leq x \leq 0$

7. For the piecewise defined function $f(x)=\left\{\begin{array}{ll}3 x-1 & x<3 \\ \frac{1}{2} x+7 & x \geq 3\end{array}\right.$, which of the following is the value of $f(6)$?
(1) 7
(3) 17
(2) 10
(4) 27
8. If $f(x)=x^{2}-2 x-11$, then which of the following values of x solves $f(x)=4$?
(1) $x=0$
(3) $x=3$
(2) $x=-2$
(4) $x=5$
9. The function $f(x)$ is shown graphed below. The function g is defined by the formula $g(x)=3 f(x)-2$ for all values of x in the domain of f. Which of the following is the value of $g(2)$?
(1) -5
(2) -1
(3) 3
(4) 4

10. Given the graph of $h(x)$ shown below, over which of the following intervals is h increasing?
(1) $-1<x<4$
(2) $-3<x<1$
(3) $-3<x<3$
(4) $1<x<4$

Free Response Questions:

11. The two diagrams below show how elements of a domain get changed into elements of a range. In one case, this represents a function. In the other case, it does not. Explain which is a function and which is not. Fully explain your choices.

Case \#1

Case \#2
12. For the function $y=f(x)$ shown graphed below, answer the following questions
(a) Find the value of $f(3)+f(6)$.
(b) State all intervals over which $f(x)<0$.

(c) Solve the equation $f(x)=0$ for all value(s) of x. Circle the points on your graph that you use to find your solutions.
(d) Give an interval over which $f(x)$ is only decreasing.
13. Michael is walking from home to a subway stop that is 10 blocks away. Calculate Michael's average rate of change, in blocks per minute, for each of the following intervals:

0 to 9 minutes

9 to 13 minutes

13 to 19 minutes

During which interval is Michael moving the slowest?
14. Circle if each of the following is a function:

Yes No

Yes No
15. The table below is partially filled out for the function $f(x)=x^{2}-3 x-4$.

x	-3	-2	-1	0	1	2	3	4	5
$f(x)$	14			-4		-6			6

(a) Fill out the remaining portions of the table.
(b) State the zeroes of the function.
(c) What is the maximum value of f on this interval?

